plot_fit
- sherpa.astro.ui.plot_fit(id: IdType | None = None, replot=False, overplot=False, clearwindow=True, **kwargs) None
Plot the fit results (data, model) for a data set.
This function creates a plot containing the data and the model (including any instrument response) for a data set.
- Parameters:
id (int, str, or None, optional) – The data set. If not given then the default identifier is used, as returned by
get_default_id
.replot (bool, optional) – Set to
True
to use the values calculated by the last call toplot_fit
. The default isFalse
.overplot (bool, optional) – If
True
then add the data to an existing plot, otherwise create a new plot. The default isFalse
.clearwindow (bool, optional) – Should the existing plot area be cleared before creating this new plot (e.g. for multi-panel plots)?
- Raises:
sherpa.utils.err.IdentifierErr – If the data set does not exist or a source expression has not been set.
See also
get_fit_plot
Return the data used to create the fit plot.
get_default_id
Return the default data set identifier.
plot
Create one or more plot types.
plot_fit_delchi
Plot the fit results, and the residuals, for a data set.
plot_fit_ratio
Plot the fit results, and the ratio of data to model, for a data set.
plot_fit_resid
Plot the fit results, and the residuals, for a data set.
plot_data
Plot the data values.
plot_model
Plot the model for a data set.
set_xlinear
New plots will display a linear X axis.
set_xlog
New plots will display a logarithmically-scaled X axis.
set_ylinear
New plots will display a linear Y axis.
set_ylog
New plots will display a logarithmically-scaled Y axis.
Notes
The additional arguments supported by
plot_fit
are the same as the keywords of the dictionary returned byget_data_plot_prefs
.Examples
Plot the fit results for the default data set:
>>> plot_fit()
Overplot the ‘core’ results on those from the ‘jet’ data set, using a logarithmic scale for the X axis:
>>> set_xlog() >>> plot_fit('jet') >>> plot_fit('core', overplot=True)
Keyword arguments can be given to override the plot preferences; for example the following sets the y axis to a log scale, but only for this plot:
>>> plot_fit(ylog=True)
The color can be changed for both the data and model using (note that the keyword name and supported values depends on the plot backend; this example assumes that Matplotlib is being used):
>>> plot_fit(color='orange')
Draw the fits for two datasets, setting the second one partially transparent (this assumes Matplotlib is used):
>>> plot_fit(1) >>> plot_fit(2, alpha=0.7, overplot=True)