get_energy_flux_hist
- sherpa.astro.ui.get_energy_flux_hist(lo=None, hi=None, id: IdType | None = None, num=7500, bins=75, correlated=False, numcores=None, bkg_id: IdType | None = None, scales=None, model=None, otherids: Sequence[IdType] = (), recalc=True, clip='hard')
Return the data displayed by plot_energy_flux.
The get_energy_flux_hist() function calculates a histogram of simulated energy flux values representing the energy flux probability distribution for a model component, accounting for the errors on the model parameters.
Changed in version 4.12.2: The scales parameter is no longer ignored when set and the model and otherids parameters have been added. The clip argument has been added.
- Parameters:
lo (number, optional) – The lower limit to use when summing up the signal. If not given then the lower value of the data grid is used.
hi (optional) – The upper limit to use when summing up the signal. If not given then the upper value of the data grid is used.
id (int or string or None, optional) – The identifier of the data set to use. If
None
, the default value, then all datasets with associated models are used to calculate the errors and the model evaluation is done using the default dataset.num (int, optional) – The number of samples to create. The default is 7500.
bins (int, optional) – The number of bins to use for the histogram.
correlated (bool, optional) – If
True
(the default isFalse
) thenscales
is the full covariance matrix, otherwise it is just a 1D array containing the variances of the parameters (the diagonal elements of the covariance matrix).numcores (optional) – The number of CPU cores to use. The default is to use all the cores on the machine.
bkg_id (int, str, or None, optional) – The identifier of the background component to use. This should only be set when the line to be measured is in the background model.
scales (array, optional) – The scales used to define the normal distributions for the parameters. The size and shape of the array depends on the number of free parameters in the fit (n) and the value of the
correlated
parameter. When the parameter isTrue
, scales must be given the covariance matrix for the free parameters (a n by n matrix that matches the parameter ordering used by Sherpa). For un-correlated parameters the covariance matrix can be used, or a one-dimensional array of n elements can be used, giving the width (specified as the sigma value of a normal distribution) for each parameter (e.g. the square root of the diagonal elements of the covariance matrix). If the scales parameter is not given then the covariance matrix is evaluated for the current model and best-fit parameters.model (model, optional) – The model to integrate. If left as
None
then the source model for the dataset will be used. This can be used to calculate the unabsorbed flux, as shown in the examples. The model must be part of the source expression.otherids (sequence of integer and string ids, optional) – The list of other datasets that should be included when calculating the errors to draw values from.
recalc (bool, optional) – If
True
, the default, then re-calculate the values rather than use the values from the last time the function was run.clip ({'hard', 'soft', 'none'}, optional) – What clipping strategy should be applied to the sampled parameters. The default (‘hard’) is to fix values at their hard limits if they exceed them. A value of ‘soft’ uses the soft limits instead, and ‘none’ applies no clipping.
- Returns:
hist – An object representing the data used to create the plot by
plot_energy_flux
.- Return type:
a
sherpa.astro.plot.EnergyFluxHistogram
instance
See also
get_photon_flux_hist
Return the data displayed by plot_photon_flux.
plot_energy_flux
Display the energy flux distribution.
plot_photon_flux
Display the photon flux distribution.
sample_energy_flux
Return the energy flux distribution of a model.
sample_flux
Return the flux distribution of a model.
sample_photon_flux
Return the photon flux distribution of a model.
Examples
Get the energy flux distribution for the range 0.5 to 7 for the default data set:
>>> ehist = get_energy_flux_hist(0.5, 7, num=1000) >>> print(ehist)
Compare the 0.5 to 2 energy flux distribution from the “core” data set to the values from the “jet” data set:
>>> ehist1 = get_energy_flux_hist(0.5, 2, id='jet', num=1000) >>> ehist2 = get_energy_flux_hist(0.5, 2, id='core', num=1000)
Compare the flux distribution for the full source expression (aflux) to that for just the pl component (uflux); this can be useful to calculate the unabsorbed flux distribution if the full source model contains an absorption component:
>>> aflux = get_energy_flux_hist(0.5, 2, num=1000, bins=20) >>> uflux = get_energy_flux_hist(0.5, 2, model=pl, num=1000, bins=20)
When there are multiple datasets loaded,
get_energy_flux_hist
uses all datasets to evaluate the errors when theid
parameter is left at its default value ofNone
. Theotherids
parameter is used, along withid
, to specify exactly what datasets are used:>>> x = get_energy_flux_hist(2, 10, num=1000, bins=20, model=src) >>> y = get_energy_flux_hist(2, 10, num=1000, bins=20, model=src, ... id=1, otherids=(2, 3, 4))