Data1D
- class sherpa.data.Data1D(name: str, x: Sequence[float] | ndarray | None, y: Sequence[float] | ndarray | None, staterror: Sequence[float] | ndarray | None = None, syserror: Sequence[float] | ndarray | None = None)[source] [edit on github]
Bases:
Data
Dateset for 1D data.
- Parameters:
name (string) – name of this dataset
x (array-like) – Coordinates of the independent variable
y (array-like) – The values of the dependent observable. If this is a numpy masked array, the mask will used to initialize a mask.
staterror (array-like) – the statistical error associated with the data
syserror (array-like) – the systematic error associated with the data
Attributes Summary
Left for compatibility with older versions
The grid of the data space associated with this data set.
Mask array for dependent variable
The dimensionality of the dataset, if defined, or None.
The number of elements in the data set.
The statistical error on the dependent axis, if set.
The systematic error on the dependent axis, if set.
Used for compatibility, in particular for __str__ and __repr__
The dependent axis.
Methods Summary
apply_filter
(data)eval_model
(modelfunc)Evaluate the model on the independent axis.
eval_model_to_fit
(modelfunc)Evaluate the model on the independent axis after filtering.
get_dep
([filter])Return the dependent axis of a data set.
get_dims
([filter])Return the dimensions of this data space as a tuple of tuples.
get_error
([filter, staterrfunc])Return the total error on the dependent variable.
get_evaluation_indep
([filter, model, ...])get_filter
([format, delim])Return the data filter as a string.
Return the data filter as a string along with the units.
get_img
([yfunc])Return 1D dependent variable as a 1 x N image.
get_indep
([filter])Return the independent axes of a data set.
get_staterror
([filter, staterrfunc])Return the statistical error on the dependent axis of a data set.
get_syserror
([filter])Return the systematic error on the dependent axis of a data set.
get_x
([filter, model, use_evaluation_space])get_xerr
([filter, yfunc])Return linear view of bin size in independent axis/axes.
Return label for linear view of independent axis/axes
get_y
()Return the dependent axis.
get_yerr
([filter, staterrfunc])Return errors in dependent axis in N-D view of dependent variable.
get_ylabel
([yfunc])Return label for dependent axis in N-D view of dependent variable.
ignore
(*args, **kwargs)notice
([xlo, xhi, ignore])Notice or ignore the given range.
set_dep
(val)Set the dependent variable values.
set_indep
(val)set_xlabel
(label)Set the label for the independent axis.
set_ylabel
(label)Set the label for the dependent axis.
to_component_plot
([yfunc, staterrfunc])to_fit
([staterrfunc])to_guess
()to_plot
([yfunc, staterrfunc])Attributes Documentation
- dep
Left for compatibility with older versions
- indep
The grid of the data space associated with this data set.
When set, the field must be set to a tuple, even for a one-dimensional data set. The “related” fields such as the dependent axis and the error fields are set to None if their size does not match.
Changed in version 4.14.1: The filter created by
notice
andignore
is now cleared when the independent axis is changed.- Return type:
tuple of array_like or None
- mask
Mask array for dependent variable
- Returns:
mask
- Return type:
- size
The number of elements in the data set.
- Returns:
size – If the size has not been set then None is returned.
- Return type:
int or None
- staterror
The statistical error on the dependent axis, if set.
This must match the size of the independent axis.
- syserror
The systematic error on the dependent axis, if set.
This must match the size of the independent axis.
- x
Used for compatibility, in particular for __str__ and __repr__
- y
The dependent axis.
If set, it must match the size of the independent axes.
Methods Documentation
- apply_filter(data) [edit on github]
- eval_model(modelfunc: Callable[[...], Sequence[float] | ndarray]) Sequence[float] | ndarray [edit on github]
Evaluate the model on the independent axis.
- eval_model_to_fit(modelfunc: Callable[[...], Sequence[float] | ndarray]) Sequence[float] | ndarray [edit on github]
Evaluate the model on the independent axis after filtering.
- get_bounding_mask() tuple[bool, None] [source] [edit on github]
- get_bounding_mask() tuple[ndarray, tuple[int]]
- get_dep(filter: bool = False) ndarray | None [edit on github]
Return the dependent axis of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The dependent axis values for the data set. This gives the value of each point in the data set.
- Return type:
array
See also
get_indep
Return the independent axis of a data set.
get_error
Return the errors on the dependent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_dims(filter: bool = False) tuple[int, ...] [source] [edit on github]
Return the dimensions of this data space as a tuple of tuples. The first element in the tuple is a tuple with the dimensions of the data space, while the second element provides the size of the dependent array.
- Return type:
- get_error(filter=False, staterrfunc=None) [edit on github]
Return the total error on the dependent variable.
- Parameters:
- Returns:
axis – The error for each data point, formed by adding the statistical and systematic errors in quadrature.
- Return type:
array or
None
See also
get_dep
Return the independent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_evaluation_indep(filter: bool = False, model: Callable[[...], Sequence[float] | ndarray] | None = None, use_evaluation_space: bool = False) ndarray | None [source] [edit on github]
- get_filter(format: str = '%.4f', delim: str = ':') str [source] [edit on github]
Return the data filter as a string.
- Parameters:
- Returns:
filter – The filter, represented as a collection of single values or ranges, separated by commas.
- Return type:
See also
Examples
>>> import numpy as np >>> x = np.asarray([1, 2, 3, 5, 6]) >>> y = np.ones(5) >>> d = Data1D('example', x, y) >>> d.get_filter() '1.0000:6.0000' >>> d.ignore(2.5, 4.5) >>> d.get_filter() '1.0000:2.0000,5.0000:6.0000'
>>> d.get_filter(format='%i', delim='-') '1-2,5-6'
- get_filter_expr() str [source] [edit on github]
Return the data filter as a string along with the units.
This is a specialised version of get_filter which adds the axis units.
- Returns:
filter – The filter, represented as a collection of single values or ranges, separated by commas.
- Return type:
See also
Examples
>>> d = Data1D('example', [1., 2., 3., 5., 6., 7.], [0, .4, .5, .6, .7, .8]) >>> d.notice(1., 6.) >>> d.ignore(2.5, 4.) >>> d.get_filter_expr() '1.0000-2.0000,5.0000-6.0000 x'
Note that the expression lists the valid data points. While we ignore only the range 2.5-4.0, there is no data point between 4. and 5., so the second part of the valid range is 5.0 to 6.0.
- get_img(yfunc=None)[source] [edit on github]
Return 1D dependent variable as a 1 x N image.
- Parameters:
yfunc
- get_imgerr()[source] [edit on github]
- get_indep(filter: bool = False) tuple[ndarray, ...] | tuple[None, ...] [edit on github]
Return the independent axes of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The independent axis values for the data set. This gives the coordinates of each point in the data set.
- Return type:
tuple of arrays
See also
get_dep
Return the dependent axis of a data set.
- get_staterror(filter: bool = False, staterrfunc: Callable[[...], Sequence[float] | ndarray] | None = None) Sequence[float] | ndarray | None [edit on github]
Return the statistical error on the dependent axis of a data set.
- Parameters:
- Returns:
axis – The statistical error for each data point. A value of
None
is returned if the data set has no statistical error array andstaterrfunc
isNone
.- Return type:
array or
None
See also
get_error
Return the errors on the dependent axis of a data set.
get_indep
Return the independent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_syserror(filter: bool = False) ndarray | None [edit on github]
Return the systematic error on the dependent axis of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The systematic error for each data point. A value of
None
is returned if the data set has no systematic errors.- Return type:
array or None
See also
get_error
Return the errors on the dependent axis of a data set.
get_indep
Return the independent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
- get_x(filter: bool = False, model: Callable[[...], Sequence[float] | ndarray] | None = None, use_evaluation_space: bool = False) ndarray | None [source] [edit on github]
- get_xerr(filter: bool = False, yfunc=None) ndarray | None [source] [edit on github]
Return linear view of bin size in independent axis/axes.
- Parameters:
filter
yfunc
- Returns:
xerr
- Return type:
array or None
- get_xlabel() str [source] [edit on github]
Return label for linear view of independent axis/axes
- Returns:
label
- Return type:
See also
- get_y(filter: bool, yfunc: None = None, use_evaluation_space: bool = False) ndarray [source] [edit on github]
- get_y(filter: bool, yfunc: Callable[[...], Sequence[float] | ndarray], use_evaluation_space: bool = False) tuple[ndarray, Sequence[float] | ndarray]
Return the dependent axis.
- Parameters:
filter
yfunc
use_evaluation_space
- Returns:
y – If yfunc is not None and the dependent axis is set then the return value is (y, y2) where y2 is yfunc evaluated on the independent axis.
- Return type:
array or (array, array) or None
- get_yerr(filter=False, staterrfunc=None) [edit on github]
Return errors in dependent axis in N-D view of dependent variable.
- Parameters:
filter
staterrfunc
- get_ylabel(yfunc=None) str [edit on github]
Return label for dependent axis in N-D view of dependent variable.
- Parameters:
yfunc – Unused.
- Returns:
label – The label.
- Return type:
See also
- ignore(*args, **kwargs) None [edit on github]
- notice(xlo: float | None = None, xhi: float | None = None, ignore: bool = False) None [source] [edit on github]
Notice or ignore the given range.
Ranges are inclusive for both the lower and upper limits.
- Parameters:
xlo (number or None, optional) – The range to change. A value of None means the minimum or maximum permitted value.
xhi (number or None, optional) – The range to change. A value of None means the minimum or maximum permitted value.
ignore (bool, optional) – Set to True if the range should be ignored. The default is to notice the range.
See also
Notes
If no ranges have been ignored then a call to
notice
withignore=False
will select just thelo
tohi
range, and exclude any bins outside this range. If there has been a filter applied then the rangelo
tohi
will be added to the range of noticed data (whenignore=False
).Examples
>>> import numpy as np >>> x = np.arange(0.4, 2.6, 0.2) >>> y = np.ones_like(x) >>> d = Data1D('example', x, y) >>> d.x[0], d.x[-1] (0.4, 2.4000000000000004) >>> d.notice() >>> d.get_filter(format='%.1f') '0.4:2.4' >>> d.notice(0.8, 1.2) >>> d.get_filter(format='%.1f') '0.8:1.2' >>> d.notice(1.5, 2.1) >>> d.get_filter(format='%.1f') '0.8:1.2,1.6:2.0'
- set_dep(val: Sequence[float] | ndarray | float) None [edit on github]
Set the dependent variable values.
- Parameters:
val (sequence or number) – If a number then it is used for each element.
- set_xlabel(label: str) None [source] [edit on github]
Set the label for the independent axis.
Added in version 4.17.0.
- Parameters:
label (str) – The new label.
See also
- set_ylabel(label: str) None [edit on github]
Set the label for the dependent axis.
Added in version 4.17.0.
- Parameters:
label (str) – The new label.
See also
- to_component_plot(yfunc: Callable[[...], Sequence[float] | ndarray] | None = None, staterrfunc: Callable[[...], Sequence[float] | ndarray] | None = None)[source] [edit on github]
- to_fit(staterrfunc: Callable[[...], Sequence[float] | ndarray] | None = None) tuple[ndarray | None, Sequence[float] | ndarray | None, ndarray | None] [edit on github]
- to_guess() tuple[ndarray | None, ...] [edit on github]