Data
- class sherpa.data.Data(name: str, indep: Sequence[Sequence[float] | ndarray] | Sequence[None], y: Sequence[float] | ndarray | None, staterror: Sequence[float] | ndarray | None = None, syserror: Sequence[float] | ndarray | None = None)[source] [edit on github]
Bases:
NoNewAttributesAfterInit
,BaseData
Generic, N-Dimensional data sets.
A data class is the collection of a data space and a number of data arrays for the dependent variable and associated errors.
- Parameters:
name (string) – name of this dataset
indep (tuple of array_like) – the tuple of independent arrays.
y (array_like) – The values of the dependent observable. If this is a numpy masked array, the mask will used to initialize a mask.
staterror (array_like) – the statistical error associated with the data
syserror (array_like) – the systematic error associated with the data
Notes
This class can be extended by classes defining data sets of specific dimensionality. Extending classes should override the
_init_data_space
method.This class provides most of the infrastructure for extending classes for free.
Data classes contain a
mask
attribute, which can be used ignore certain values in the array when fitting or plotting that data. The convention in Sherpa is thatTrue
marks a values as valid andFalse
as invalid (note that this is opposite to the numpy convention). When aData
instance is initialized with a dependent array that has amask
attribute (e.g. numpy masked array), it will attempt to convert that mask to the Sherpa convention and raise a warning otherwise. In any case, the user can setdata.mask
after initialization if that conversion does not yield the expected result.Attributes Summary
Left for compatibility with older versions
The grid of the data space associated with this data set.
Mask array for dependent variable
The dimensionality of the dataset, if defined, or None.
The number of elements in the data set.
The statistical error on the dependent axis, if set.
The systematic error on the dependent axis, if set.
The dependent axis.
Methods Summary
eval_model
(modelfunc)Evaluate the model on the independent axis.
eval_model_to_fit
(modelfunc)Evaluate the model on the independent axis after filtering.
get_dep
([filter])Return the dependent axis of a data set.
get_dims
()Return the dimensions of this data space as a tuple of tuples.
get_error
([filter, staterrfunc])Return the total error on the dependent variable.
get_indep
([filter])Return the independent axes of a data set.
get_staterror
([filter, staterrfunc])Return the statistical error on the dependent axis of a data set.
get_syserror
([filter])Return the systematic error on the dependent axis of a data set.
get_y
()Return dependent axis in N-D view of dependent variable
get_yerr
([filter, staterrfunc])Return errors in dependent axis in N-D view of dependent variable.
get_ylabel
([yfunc])Return label for dependent axis in N-D view of dependent variable.
ignore
(*args, **kwargs)notice
(mins, maxes[, ignore, integrated])set_dep
(val)Set the dependent variable values.
set_indep
(val)set_ylabel
(label)Set the label for the dependent axis.
to_fit
([staterrfunc])to_guess
()Attributes Documentation
- dep
Left for compatibility with older versions
- indep
The grid of the data space associated with this data set.
When set, the field must be set to a tuple, even for a one-dimensional data set. The “related” fields such as the dependent axis and the error fields are set to None if their size does not match.
Changed in version 4.14.1: The filter created by
notice
andignore
is now cleared when the independent axis is changed.- Return type:
tuple of array_like or None
- mask
Mask array for dependent variable
- Returns:
mask
- Return type:
- size
The number of elements in the data set.
- Returns:
size – If the size has not been set then None is returned.
- Return type:
int or None
- staterror
The statistical error on the dependent axis, if set.
This must match the size of the independent axis.
- syserror
The systematic error on the dependent axis, if set.
This must match the size of the independent axis.
- y
The dependent axis.
If set, it must match the size of the independent axes.
Methods Documentation
- apply_filter(data: None) None [source] [edit on github]
- apply_filter(data: Sequence[float] | ndarray) ndarray
- eval_model(modelfunc: Callable[[...], Sequence[float] | ndarray]) Sequence[float] | ndarray [source] [edit on github]
Evaluate the model on the independent axis.
- eval_model_to_fit(modelfunc: Callable[[...], Sequence[float] | ndarray]) Sequence[float] | ndarray [source] [edit on github]
Evaluate the model on the independent axis after filtering.
- get_dep(filter: bool = False) ndarray | None [source] [edit on github]
Return the dependent axis of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The dependent axis values for the data set. This gives the value of each point in the data set.
- Return type:
array
See also
get_indep
Return the independent axis of a data set.
get_error
Return the errors on the dependent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_dims() tuple[int, ...] [source] [edit on github]
Return the dimensions of this data space as a tuple of tuples. The first element in the tuple is a tuple with the dimensions of the data space, while the second element provides the size of the dependent array.
- Return type:
- get_error(filter=False, staterrfunc=None)[source] [edit on github]
Return the total error on the dependent variable.
- Parameters:
- Returns:
axis – The error for each data point, formed by adding the statistical and systematic errors in quadrature.
- Return type:
array or
None
See also
get_dep
Return the independent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_indep(filter: bool = False) tuple[ndarray, ...] | tuple[None, ...] [source] [edit on github]
Return the independent axes of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The independent axis values for the data set. This gives the coordinates of each point in the data set.
- Return type:
tuple of arrays
See also
get_dep
Return the dependent axis of a data set.
- get_staterror(filter: bool = False, staterrfunc: Callable[[...], Sequence[float] | ndarray] | None = None) Sequence[float] | ndarray | None [source] [edit on github]
Return the statistical error on the dependent axis of a data set.
- Parameters:
- Returns:
axis – The statistical error for each data point. A value of
None
is returned if the data set has no statistical error array andstaterrfunc
isNone
.- Return type:
array or
None
See also
get_error
Return the errors on the dependent axis of a data set.
get_indep
Return the independent axis of a data set.
get_syserror
Return the systematic errors on the dependent axis of a data set.
- get_syserror(filter: bool = False) ndarray | None [source] [edit on github]
Return the systematic error on the dependent axis of a data set.
- Parameters:
filter (bool, optional) – Should the filter attached to the data set be applied to the return value or not. The default is
False
.- Returns:
axis – The systematic error for each data point. A value of
None
is returned if the data set has no systematic errors.- Return type:
array or None
See also
get_error
Return the errors on the dependent axis of a data set.
get_indep
Return the independent axis of a data set.
get_staterror
Return the statistical errors on the dependent axis of a data set.
- get_y(filter: bool, yfunc: None, use_evaluation_space: bool = False) ndarray [source] [edit on github]
- get_y(filter: bool, yfunc: Callable[[...], Sequence[float] | ndarray], use_evaluation_space: bool = False) tuple[ndarray, Sequence[float] | ndarray]
Return dependent axis in N-D view of dependent variable
- Parameters:
filter
yfunc
use_evaluation_space
- Returns:
y – If yfunc is not None and the dependent axis is set then the return value is (y, y2) where y2 is yfunc evaluated on the independent axis.
- Return type:
array or (array, array) or None
- get_yerr(filter=False, staterrfunc=None)[source] [edit on github]
Return errors in dependent axis in N-D view of dependent variable.
- Parameters:
filter
staterrfunc
- get_ylabel(yfunc=None) str [source] [edit on github]
Return label for dependent axis in N-D view of dependent variable.
- Parameters:
yfunc – Unused.
- Returns:
label – The label.
- Return type:
See also
- ignore(*args, **kwargs) None [source] [edit on github]
- set_dep(val: Sequence[float] | ndarray | float) None [source] [edit on github]
Set the dependent variable values.
- Parameters:
val (sequence or number) – If a number then it is used for each element.
- set_indep(val: tuple[Sequence[float] | ndarray, ...] | tuple[None, ...]) None [source] [edit on github]
- set_ylabel(label: str) None [source] [edit on github]
Set the label for the dependent axis.
Added in version 4.17.0.
- Parameters:
label (str) – The new label.
See also