poisson_noise
- sherpa.utils.random.poisson_noise(x: SupportsFloat, rng: Generator | RandomState | None = None) float64 [source] [edit on github]
- sherpa.utils.random.poisson_noise(x: Sequence[SupportsFloat], rng: Generator | RandomState | None = None) ndarray
Draw samples from a Poisson distribution.
- Parameters:
x (scalar or array) – The expectation value for the distribution.
rng (numpy.random.Generator, numpy.random.RandomState, or None, optional) – Determines how the random numbers are created. If set to None then the
numpy.random.poisson
routine is used.
- Returns:
out – A random realisation of the input array, drawn from the Poisson distribution, as a
SherpaFloat
.- Return type:
scalar or array
Notes
All input values less than zero are replaced by zero.
Examples
When the rng parameter is left as None then the legacy Numpy random API is used:
>>> np.random.seed(17389) >>> poisson_noise([10, 20, 5]) array([ 7., 20., 6.])
Note that the seed used by the legacy Numpy is not guaranteed to match the behavior of the numpy generators:
>>> rng = np.random.default_rng(17389) >>> poisson_noise([10, 20, 5], rng=rng) array([12., 31., 7.])