OptMethod
- class sherpa.optmethods.OptMethod(name, optfunc)[source] [edit on github]
Bases:
NoNewAttributesAfterInit
Base class for the optimisers.
- Parameters:
name (str) – The name of the optimiser.
optfunc (function) – The function which optimises the model: its arguments are a function which evaluates the statistic given a list of parameter values, the starting parameters, minima, and maxima, followed by keyword arguments matching the configuration data.
Attributes Summary
The default settings for the optimiser.
Methods Summary
fit
(statfunc, pars, parmins, parmaxes[, ...])Run the optimiser.
Attributes Documentation
- default_config
The default settings for the optimiser.
Methods Documentation
- fit(statfunc, pars, parmins, parmaxes, statargs=(), statkwargs=None)[source] [edit on github]
Run the optimiser.
Changed in version 4.16.0: The statkwargs argument now defaults to None rather than {}.
- Parameters:
statfunc (function) – Given a list of parameter values as the first argument and, as the remaining positional arguments,
statargs
andstatkwargs
as keyword arguments, return the statistic value.pars (sequence) – The start position of the model parameter values.
parmins (sequence) – The minimum allowed values for each model parameter. This must match the length of
pars
.parmaxes (sequence) – The maximum allowed values for each model parameter. This must match the length of
pars
.statargs (optional) – Additional positional arguments to send to
statfunc
.statkwargs (dict, optional) – Additional keyword arguments to send to
statfunc
.
- Returns:
newpars – The tuple contains: boolean indicating whether the optimization succeeded or not, the best fit parameters as a NumPy array, the statistic value at the best-fit location, a string message indicating the status, and a dictionary containing information about the optimisation (this depends on the optimiser).
- Return type: