Source code for sherpa.ui.utils

#
#  Copyright (C) 2010, 2015 - 2024
#  Smithsonian Astrophysical Observatory
#
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License along
#  with this program; if not, write to the Free Software Foundation, Inc.,
#  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#

from __future__ import annotations

from configparser import ConfigParser
import copy
import copyreg as copy_reg
from dataclasses import dataclass
import importlib
import logging
import os
import pickle
import sys
from typing import Any, Callable, Literal, Optional, Sequence, \
    TypeVar, Union, overload

import numpy as np

from sherpa import get_config
import sherpa.all
from sherpa.data import Data, DataSimulFit
from sherpa.estmethods import EstMethod
from sherpa.fit import Fit, FitResults
from sherpa.models.basic import TableModel
from sherpa.models.model import Model, SimulFitModel
from sherpa.models.template import add_interpolator, create_template_model, \
    reset_interpolators
from sherpa.optmethods import OptMethod
from sherpa.plot import Plot, MultiPlot, set_backend, get_per_plot_kwargs
from sherpa.stats import Stat, UserStat
from sherpa.utils import NoNewAttributesAfterInit, is_subclass, \
    export_method, send_to_pager
from sherpa.utils.err import ArgumentErr, ArgumentTypeErr, \
    DataErr, IdentifierErr, IOErr, ModelErr, ParameterErr, PlotErr, \
    SessionErr
from sherpa.utils.numeric_types import SherpaFloat
from sherpa.utils.random import RandomType
from sherpa.utils.types import IdType

info = logging.getLogger(__name__).info
warning = logging.getLogger(__name__).warning

config = ConfigParser()
config.read(get_config())

np.set_printoptions(threshold=int(config.get('verbosity',
                                             'arraylength',
                                             fallback=1000000)))

__all__ = ('ModelWrapper', 'Session')

BUILTINS = sys.modules["builtins"]
_builtin_symbols_ = tuple(BUILTINS.__dict__.keys())


ModelType = Union[Model, str]
T = TypeVar("T")


###############################################################################
#
# Errors and argument checking
#
###############################################################################


def _check_type(arg, argtype, argname: str, argdesc: str) -> None:
    if isinstance(arg, argtype):
        return

    raise ArgumentTypeErr('badarg', argname, argdesc)


def _check_str_type(arg: str, argname: str) -> None:
    """Ensure that arg (with name argname) is a string"""
    if _is_str(arg):
        return

    raise ArgumentTypeErr('badarg', argname, "a string")


# With Python 3.10 these can return TypeGuard annotations.
#
def _is_integer(val):
    return isinstance(val, (int, np.integer))


def _is_str(val):
    return isinstance(val, (str, ))


def get_plot_prefs(plotobj):
    """Return the preferences for the plot object.

    The current preference design has the attribute name be different
    depending if this is a "histogram" style compared to a "line"
    style, so wrap this logic up. If there is no matching preference
    then raise an AttributeError. If the object contains both line and
    histogram preferences then the histogram preferences are returned.

    """

    try:
        return plotobj.histo_prefs
    except AttributeError:
        try:
            return plotobj.plot_prefs
        except AttributeError:
            raise AttributeError("plot object has no preferences") from None


def _get_filter(data):
    """Report the filter for report_filter_change.

    This takes care of calling get_filter with the correct
    arguments (needed in case anyone wants to use the string
    in a call to notice/ignore), and it handles the case of
    the case of all-data-being-filtered leading to an error
    for certain data types.

    Parameters
    ----------
    data : sherpa.data.Data1D instance

    Returns
    -------
    msg : str or None
        The filter expression, with "all-data-filtered" indicated by
        the empty string, or None when there was an error (which
        shouldn't happen, but we don't want to fail a notice or ignore
        call when reporting the change).

    """

    # See #1430 for a discussion on why we have different behavior
    # when all the data is excluded: it should be unified.
    #
    # We follow the approach used for the DataIMG case be relying on
    # the mask attribute to determine what the output should
    # be. Unfortunately this is only helpful for the "all data
    # excluded" case, as we do not have the equivalent of "Field()" to
    # indicate "use all the data", and we can not remove the DataErr
    # exception check from get_filter, just in case.
    #
    if data.mask is False:
        return ""

    try:
        return data.get_filter(delim=':', format='%g')
    except DataErr as exc:
        # It may be possible that this happens - e.g. that data.mask
        # is a ndarray of all False values - but it is not 100%
        # obvious.  This is left in just in case.
        #
        if str(exc) == "mask excludes all data":
            return ""

        # It's not clear if this can happen, but assume it can.
        #
        return None

    except TypeError:
        # This can happen when the dataset is Data2D, as get_filter
        # does not accept kwargs, so we skip over it (as the handling
        # of filters for Data2D is not clear).
        #
        return None

    except IndexError:
        # This is a known failure case with ignore_bad handling of
        # DataPHA. Is this still an issue? It is safer to leave in.
        #
        return None


def report_filter_change(idstr: str,
                         ofilter: Optional[str],
                         nfilter: Optional[str],
                         xlabel: Optional[str] = None
                         ) -> None:
    """Report the filter change for ignore/filter.

    Parameters
    ----------
    idstr : str
       The dataset identifier (expected to be "dataset <idval>" but
       may be "dataset <idval>: background <bkg_id>" for DataPHA).
    ofilter, nfilter : str or None
       The filter string before and after filtering (the output
       of _get_filter).
    xlabel : str or None
       The units of the filter (if set).

    Notes
    -----

    A filter expression of "" (the empty string) is taken to mean all
    data has been removed, and converted to something more readable
    here.

    If either ofilter or nfilter is None then we assume that some
    error has happened. The reporting of this depends on what has gone
    wrong. That is, are both None (so broken before and after), is
    only nfilter None (so now broken), or is only ofilter None (so it
    has somehow been "fixed")?

    """

    ostr = f"{idstr}: "

    if ofilter is None and nfilter is not None:
        # Let the user know the filter has changed but do not create a
        # warning message. Chose "<broken>" as the original filter
        # state since this is not going to match nfilter, and
        # indicates that the user should be careful.
        #
        ofilter = "<broken>"

    if ofilter is None or nfilter is None:
        emsg = f"{ostr}1D filter has failed"
        logging.getLogger(__name__).error(emsg)
        return

    # Make it easy to handle labels being optional
    if xlabel is None:
        label = ""
    else:
        label = f" {xlabel}"

    # We have to be careful because we can get a filter expression
    # of '' when there's no data. The current handling of this case
    # is not robust (sometimes it errors out, sometimes it is an
    # empty string).
    #
    if ofilter == "":
        if nfilter == "":
            ostr += "no data (unchanged)"

        else:
            ostr += f"no data -> {nfilter}{label}"

    elif nfilter == "":
        ostr += f"{ofilter}{label} -> no data"

    else:
        ostr += f"{ofilter}"
        if ofilter == nfilter:
            ostr += f"{label} (unchanged)"
        else:
            ostr += f" -> {nfilter}{label}"

    info(ostr)


def notice_data_range(get_data: Callable[[IdType], Data],
                      ids: Sequence[IdType],
                      lo, hi,
                      kwargs) -> None:
    """Filter each dataset and report the change in filter.

    Parameters
    ----------
    get_data : callable
        The routine to use to return the data object given a dataset
        identifier.
    ids : sequence of int or str
        The identifiers to process, in order. It is required that
        get_data can be called on each item in this sequence.
    lo, hi : number or None
        The arguments for `notice`.
    kwargs
        The extra arguments to pass to the Data `notice`, and
        the "bkg_id" identifier if the data to be filtered is a
        background PHA component instead.

    Notes
    -----
    This could be part of the Session class, but we don't need more
    methods there, so see how well things work with it out here. If it
    were a class method we could move the handling of the bkg_id
    argument to the astro Session class.

    """

    # The bkg_id argument is astro-specific. The need
    # to use it to access the correct data object is
    # problematic.
    #
    bkg_id = kwargs.pop("bkg_id", None)

    for idval in ids:
        idstr = f"dataset {idval}"
        data = get_data(idval)
        if bkg_id is not None:
            data = data.get_background(bkg_id)
            idstr += f": background {bkg_id}"

        ofilter = _get_filter(data)
        data.notice(lo, hi, **kwargs)
        nfilter = _get_filter(data)

        try:
            xlabel = data.get_xlabel()
        except AttributeError:
            # Data2D case
            xlabel = None

        report_filter_change(idstr, ofilter, nfilter, xlabel)


@overload
def calc_multiplot_size(rows: int,
                        cols: Optional[int],
                        nplots: int
                        ) -> tuple[int, int]:
    ...

@overload
def calc_multiplot_size(rows: Optional[int],
                        cols: int,
                        nplots: int
                        ) -> tuple[int, int]:
    ...

def calc_multiplot_size(rows, cols, nplots):
    """How many rows and columns to use for multi plot/contours?

    Parameters
    ----------
    rows, cols
       The requested sizes, if set (one of them must be set).
    nplots
       The number of plots.

    Returns
    -------
    (nrows, ncols)

    """

    def get(n: int) -> int:
        return int(np.ceil(nplots / n))

    # Since at least one of rows or cols must be set.
    #
    nrows = rows if rows is not None else get(cols)
    ncols = cols if cols is not None else get(rows)

    if nrows * ncols < nplots:
        # Go for the nearest (upper) square value for the number
        # of columns, and calculate the number of rows to match
        # the data.
        #
        ncols = int(np.ceil(np.sqrt(nplots)))
        nrows = get(ncols)

    return nrows, ncols


###############################################################################
#
# Pickling support
#
###############################################################################


def construct_ufunc(modname, funcname):
    module = sys.modules.get(modname)
    if module is None:
        module = importlib.import_module(modname)
    return getattr(module, funcname)


def reduce_ufunc(func):
    modname = getattr(func, '__module__', 'numpy')
    funcname = func.__name__
    if func is not getattr(sys.modules[modname], funcname, None):
        raise ValueError("module '%s' does not contain ufunc '%s'" %
                         (modname, funcname))
    return (construct_ufunc, (modname, funcname))


copy_reg.constructor(construct_ufunc)
copy_reg.pickle(np.ufunc, reduce_ufunc)


###############################################################################
#
# I/O routines
#
###############################################################################


def read_template_model(modelname, templatefile,
                        sep=' ', comment='#',
                        method=sherpa.utils.linear_interp,
                        template_interpolator_name='default'):
    """Read in a set of templates and create a template model.

    Parameters
    ----------
    modelname : str
       The identifier for this table model.
    templatefile : str
       The name of the file to read in. This file lists the template
       data files.
    sep : str, optional
       The separator character. The default is ``' '``.
    comment : str, optional
       The comment character. The default is ``'#'``.
    method : func
       The interpolation method to use to map the input data onto the
       coordinate grid of the data set. Linear, nearest-neighbor, and
       polynomial schemes are provided in the sherpa.utils module.
    template_interpolator_name : str
       The method used to interpolate within the set of templates.
       The default is ``default``. A value of ``None`` turns off the
       interpolation; in this case the grid-search optimiser must be
       used to fit the data.

    Returns
    -------
    model
        The template model.

    """

    if sherpa.utils.is_binary_file(templatefile):
        raise IOErr("notascii", templatefile)

    names, cols = sherpa.io.read_file_data(templatefile, sep=sep,
                                           comment=comment,
                                           require_floats=False)

    ncols = len(cols)
    nnames = len(names)
    if ncols != nnames:
        raise IOErr("wrongnumcols", ncols, nnames)

    names = [name.strip().lower() for name in names]

    filenames = None
    modelflags = None
    parnames = names[:]
    parvals = []
    for name, col in zip(names, cols):
        # Find the column with the filenames, remove it from the set of
        # parameter names
        if name.startswith("file"):
            filenames = col
            parnames.remove(name)
            continue

        # Find the column with the modelflags, remove it from the set of
        # parameter names
        if name.startswith("modelflag"):
            modelflags = col
            parnames.remove(name)
            continue

        parvals.append(np.array(col, dtype=SherpaFloat))

    parvals = np.asarray(parvals).T

    if len(parvals) == 0:
        raise IOErr("noparamcols", templatefile)

    if filenames is None:
        raise IOErr("reqcol", "filename", templatefile)

    if modelflags is None:
        raise IOErr("reqcol", "modelflag", templatefile)

    templates = []
    for filename in filenames:
        tnames, tcols = sherpa.io.read_file_data(filename, sep=sep, comment=comment)

        ntcols = len(tcols)
        if ntcols == 1:
            raise IOErr("onecolneedtwo", filename)
        if ntcols != 2:
            raise IOErr("wrongnumcols", 2, ntcols)

        tm = TableModel(filename)
        tm.method = method  # interpolation method
        tm.load(*tcols)
        tm.ampl.freeze()
        templates.append(tm)

    assert len(templates) == parvals.shape[0]

    return create_template_model(modelname, parnames, parvals,
                                 templates,
                                 template_interpolator_name=template_interpolator_name)


###############################################################################
#
# ModelWrapper
#
###############################################################################


[docs] class ModelWrapper(NoNewAttributesAfterInit): """Wrap up a model class so we can create instances easily. Creates a model instance with a given name - you can say mdl.mname or mdl("mname") - and either syntax stores the model instance in the session object with the name "mname", over-writing any previous component with this name. If mdl1 and mdl2 have been created by ModelWrapper then a user can say mdl1.n1 + mdl2.n2 to create model instances named n1 and n2 and then return the expression which represents their sum. """ # How do we type modeltype so that we can label __call__ as # returning an instance of it, and still identify as deriving from # Model? # def __init__(self, session: Session, modeltype, args=(), kwargs=None) -> None: # This is an internal class so do not bother with # sherpa.utils.err exceptions. # if not isinstance(session, Session): raise ValueError(f"session={session} is not a Session instance") if not is_subclass(modeltype, Model): raise ValueError(f"modeltype={modeltype} is not a Model class") self._session = session self.modeltype = modeltype self.args = args self.kwargs = kwargs if kwargs else {} # Edit the docstring of the new object to hide the # ModelWrapper text and replace it with a reference to the # wrapped class. # mname = modeltype.__name__.lower() prefix = "an" if mname[0] in "aeiou" else "a" # Grab the first line of the model description. It might be # helpful to also list the parameters but this is not easy to # access without actually creating an instance of the model. # if modeltype.__doc__ is None: mdesc = "" else: # Could try to ensure this is a sentence - e.g. ends in a # "." - but rely on the documentation of the model classes # to enforce that. # mdesc = modeltype.__doc__.split("\n")[0] mdesc += "\n\n " self.__doc__ = f"""Create {prefix} {mname} model instance. {mdesc}Instances can be created either as an attribute of {mname}, as long as the attribute does not begin with an underscore, or by calling {mname} directly. Examples -------- The model, here called mdl, is returned but it's also stored in the session and can be returned with `get_model_component`: >>> m1 = {mname}.mdl If the model has already been created with the same name then the old version will be returned, rather than creating a new instance: >>> m1 = {mname}.mdl >>> m2 = {mname}("mdl") >>> m1 == m2 True """ NoNewAttributesAfterInit.__init__(self) # TODO: can we say that this is the same class as sent to # the constructor? A TypeVar could be used, but how do we # constrain it to Model? # def __call__(self, name): _check_str_type(name, "name") m = self._session._get_model_component(name) if isinstance(m, self.modeltype): return m m = self.modeltype(name, *self.args, **self.kwargs) self._session._add_model_component(m) return m def __getattr__(self, name): if name.startswith('_'): raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") return self(name) def __repr__(self) -> str: return f'<{self.modeltype.__name__} model type>' def __str__(self) -> str: if self.modeltype.__doc__ is not None: # Use the documentation from wrapped model if available, # rather than a normal "repr" call. # return self.modeltype.__doc__ return self.__repr__()
def _assign_obj_to_main(name: str, obj) -> None: """Create a "global" symbol. Parameters ---------- name : str The name to use. obj : object The value for the symbol. """ sys.modules["__main__"].__dict__[name] = obj BUILTINS.__dict__[name] = obj def _assign_model_to_main(name: str, model: Model) -> None: """Ensure the model is added to the "global" symbol table. Parameters ---------- name : str The name to use. model : sherpa.models.model.Model instance The model. The name field will be changed to match the "<instance>.<name>" scheme. """ # Ask sys what the __main__ module is; packages such # as IPython can add their own __main__ module. model.name = '%s.%s' % (type(model).__name__.lower(), name) _assign_obj_to_main(name, model) def _remove_obj_from_main(name: str) -> None: """Remove the symbol.""" # Is this sufficient or overkill? # for base in [BUILTINS, sys.modules["__main__"]]: try: del base.__dict__[name] except KeyError: pass def set_dep(data, val) -> None: """Set the dependent axis. Parameters ---------- data : sherpa.data.Data instance val : scalar or array_like If a scalar then use the same value for all elements. """ if np.iterable(val): dep = np.asarray(val, SherpaFloat) else: val = SherpaFloat(val) dep = np.array([val] * data.size) data.dep = dep def set_error(data, field, val, fractional=False) -> None: """Set the error field. Parameters ---------- data : sherpa.data.Data instance field : {"staterror", "syserror"} val : None, a scalar, or array_like The statistical error. fractional : bool, optional If `val` is a scalar then set errors to `val * data.y`. Notes ----- The `val` field, when an array, must match the data.size field, even for grouped PHA data. """ if val is None: err = None elif np.iterable(val): err = np.asarray(val, SherpaFloat) else: val = SherpaFloat(val) if sherpa.utils.bool_cast(fractional): err = val * data.get_dep() else: err = np.array([val] * data.size) setattr(data, field, err) def set_filter(data, val, ignore=False) -> None: """Set the filter field. Parameters ---------- data : sherpa.data.Data instance val : array_like The filter array (bool-like). ignore : bool, optional If set the filter should be inverted. Notes ----- The `val` field should match the mask array, that is the "effective" size of the data. This is only different from data.size when the data is grouped (and at least one group contains multiple channels). """ val = np.asarray(val, dtype=np.bool_) nval = len(val) # Note that we do not use data.size as the check, as that fails # for grouped PHA data. Is there some way to have an "effective # size" value? # nexp = len(data.get_y(False)) if np.iterable(data.mask): if nexp != nval: raise sherpa.utils.err.DataErr('mismatchn', 'data', 'filter', nexp, nval) if not ignore: data.mask |= val else: data.mask &= ~val return # The mask attribute checks the length, so we do not have to here. # if not ignore: data.mask = val else: data.mask = ~val @dataclass class FitStore: """Store per-dataset information for a fit""" idval : IdType data : Data model : Model def get_components_helper(getfunc: Callable[..., Plot], model: Model, idval: IdType) -> MultiPlot: """Handle get_source/model_components_plot. Iterate through each term in the source model. """ out = MultiPlot() cpts = sherpa.models.model.model_deconstruct(model) for cpt in cpts: plotobj = getfunc(id=idval, model=cpt, recalc=True) out.add(plotobj) out.title = "Component plot" return out ############################################################################### # # Session # ###############################################################################
[docs] class Session(NoNewAttributesAfterInit): ########################################################################### # Standard methods ########################################################################### def __init__(self) -> None: self.clean() self._model_types: dict[str, ModelWrapper] = {} self._model_globals = np.__dict__.copy() NoNewAttributesAfterInit.__init__(self) global _session _session = self def __getstate__(self): state = self.__dict__.copy() del state['_model_globals'] return state def __setstate__(self, state): self._model_globals = np.__dict__.copy() self._model_globals.update(state['_model_types']) if '_sources' not in state: self.__dict__['_sources'] = state.pop('_models') self.__dict__.update(state) ########################################################################### # High-level utilities ########################################################################### def _export_names(self, gdict): allnames = [] for name in dir(self): if ((not name.startswith('_')) or (name == '_sherpa_version') or (name == '_sherpa_version_string')): gdict[name] = export_method(getattr(self, name), modname=gdict.get('__name__')) allnames.append(name) gdict.update(self._model_types) allnames.extend(self._model_types.keys()) return allnames
[docs] def clean(self) -> None: """Clear out the current Sherpa session. The `clean` function removes all data sets and model assignments, and restores the default settings for the optimisation and fit statistic. .. versionchanged:: 4.15.0 The model names are now removed from the global symbol table. See Also -------- save : Save the current Sherpa session to a file. restore : Load in a Sherpa session from a file. sherpa.astro.ui.save_all : Save the Sherpa session as an ASCII file. Examples -------- >>> clean() After the call to `clean`, the `line` and `bgnd` variables will be removed, so accessing them would cause a NameError. >>> set_source(gauss1d.line + const1d.bgnd) >>> bgnd.c0.min = 0 >>> print(line) >>> clean() """ # Best-guess attempt at removing all the symbols we have # created (e.g. from creating model instances). We only do # this when the _assign_model_to_main routine is in place: # this is not ideal, as it could have been changed after some # symbols were created, but assume that if the user is going # to do this then they can deal with the consequences. # # It looks like _model_components stores all the various models, # such as table and psf models. # try: if self._model_autoassign_func == _assign_model_to_main: for name in self._model_components.keys(): _remove_obj_from_main(name) except AttributeError: pass self._sherpa_version = sherpa.__version__ self._sherpa_version_string = sherpa.__version__ self._default_id: IdType = 1 self._paramprompt = False self._methods: dict[str, OptMethod] = {} self._itermethods = {'none': {'name': 'none'}, 'sigmarej': {'name': 'sigmarej', 'maxiters': 5, 'hrej': 3, 'lrej': 3, 'grow': 0}} self._stats: dict[str, Stat] = {} self._estmethods: dict[str, EstMethod] = {} modules = (sherpa.optmethods, sherpa.stats, sherpa.estmethods) basetypes = (OptMethod, Stat, EstMethod) objdicts = (self._methods, self._stats, self._estmethods) for mod, base, odict in zip(modules, basetypes, objdicts): for name in mod.__all__: cls = getattr(mod, name) if is_subclass(cls, base): odict[name.lower()] = cls() # Note: levmar does not support the rng option so this # can be done before set_rng is called. # self._current_method = self._methods['levmar'] self._current_itermethod = self._itermethods['none'] self._current_stat = self._stats['chi2gehrels'] # Add simplex as alias to neldermead self._methods['simplex'] = self._methods['neldermead'] reset_interpolators() # Should some of these dictionaries have more-restrictive # types for the value? The current hierarchy doesn't help, as # the "base" class is often a "virtual" class which ends up # missing some of the methods that the actual instances rely # on, or that it has different parameters than its # sub-classes (e.g. the plot classes), or that maybe a # more-specialized class than Model would be helpful # (e.g. _tbl_models). # self._data: dict[IdType, Data] = {} self._psf: dict[IdType, Model] = {} self._tbl_models: list[Model] = [] self._psf_models: list[Model] = [] self._model_autoassign_func = _assign_model_to_main self._model_components: dict[str, Model] = {} self._models: dict[IdType, Model] = {} self._sources: dict[IdType, Model] = {} self._fit_results = None self._pvalue_results = None self._covariance_results = None self._confidence_results = None self._projection_results = None self._pyblocxs = sherpa.sim.MCMC() self._splitplot = sherpa.plot.SplitPlot() self._jointplot = sherpa.plot.JointPlot() # self._comptmplmdlplot = sherpa.plot.ComponentTemplateModelPlot() self._comptmplsrcplot = sherpa.plot.ComponentTemplateSourcePlot() self._lrplot = sherpa.plot.LRHistogram() self._pdfplot = sherpa.plot.PDFPlot() self._cdfplot = sherpa.plot.CDFPlot() self._traceplot = sherpa.plot.TracePlot() self._scatterplot = sherpa.plot.ScatterPlot() self._intproj = sherpa.plot.IntervalProjection() self._intunc = sherpa.plot.IntervalUncertainty() self._regproj = sherpa.plot.RegionProjection() self._regunc = sherpa.plot.RegionUncertainty() self._set_plot_types() self._set_contour_types() self._set_image_types() # Reset the generator. # self.set_rng(None)
def _set_plot_types(self) -> None: """Set up the plot types.""" # The keys of _plot_types are used to define: # a) the mapping from get_<key>_plot to the plot objects # (that is, there must be a matching get_<key>_plot method) # b) valid arguments for the plot() call # c) the arguments that set_xlog/... accept # d) a set of names that can not be used as a dataset identifier # (because of point b); see also _contour_types # # Note that not all plot_xxx commands use this structure. # # Unlike the contour case, we have different plot classes to # handle different types of plot. There are either plot types # with only one plot class, such as "fit", or those that # support a version that depends on the data type, such as # "data". A list is used in both cases, with the first element # being the "generic" case and, for those that support it, the # second being the Data1DInt plot class. # # There is an argument to be made to have the "singleton" # plots, such as "fit", storing the object directly, and not # as a single-element list, but it was felt that having a # consistent access pattern was cleaner. # self._plot_types: dict[str, list[Any]] = { 'data': [sherpa.plot.DataPlot(), sherpa.plot.DataHistogramPlot()], 'model': [sherpa.plot.ModelPlot(), sherpa.plot.ModelHistogramPlot()], 'model_component': [sherpa.plot.ComponentModelPlot(), sherpa.plot.ComponentModelHistogramPlot()], 'model_components': [sherpa.plot.MultiPlot()], 'source': [sherpa.plot.SourcePlot(), sherpa.plot.SourceHistogramPlot()], 'source_component': [sherpa.plot.ComponentSourcePlot(), sherpa.plot.ComponentSourceHistogramPlot()], 'source_components': [sherpa.plot.MultiPlot()], 'fit': [sherpa.plot.FitPlot()], 'resid': [sherpa.plot.ResidPlot(), sherpa.plot.ResidHistogramPlot()], 'ratio': [sherpa.plot.RatioPlot(), sherpa.plot.RatioHistogramPlot()], 'delchi': [sherpa.plot.DelchiPlot(), sherpa.plot.DelchiHistogramPlot()], 'chisqr': [sherpa.plot.ChisqrPlot(), sherpa.plot.ChisqrHistogramPlot()], 'psf': [sherpa.plot.PSFPlot()], 'kernel': [sherpa.plot.PSFKernelPlot()] } # Set up aliases so that calls to set_xlog/.. will still # succeed, but the user will be told to use the new # name. These keys are also used, along with _plot_type_names, # to determine the set of forbidden identifiers. # self._plot_types_alias: dict[str, str] = { "compsource": "source_component", "compmodel": "model_component" } def _set_contour_types(self) -> None: """Set up the contour types.""" # This is used by the get_<key>_contour calls to access the # relevant contour class. The keys define the labels that can be # used in calls to contour(), and are also used to determine # the set of forbidden identifiers. # self._contour_types: dict[str, Any] = { "data": sherpa.plot.DataContour(), "model": sherpa.plot.ModelContour(), "source": sherpa.plot.SourceContour(), "fit": sherpa.plot.FitContour(), "resid": sherpa.plot.ResidContour(), "ratio": sherpa.plot.RatioContour(), "psf": sherpa.plot.PSFContour(), "kernel": sherpa.plot.PSFKernelContour() } def _set_image_types(self) -> None: """Set up the image types.""" # This is used by the get_<key>_image calls to access the # relevant image class. The keys are not included in any check # of valid identifiers. unlike the plot and contour cases, as # there is # # - no image() call that acts like plot() or contour(); # - and no set_xlog/... like call to change the image displays. # self._image_types: dict[str, Any] = { 'data': sherpa.image.DataImage(), 'model': sherpa.image.ModelImage(), 'source': sherpa.image.SourceImage(), 'ratio': sherpa.image.RatioImage(), 'resid': sherpa.image.ResidImage(), 'psf': sherpa.image.PSFImage(), 'kernel': sherpa.image.PSFKernelImage(), 'model_component': sherpa.image.ComponentModelImage(), 'source_component': sherpa.image.ComponentSourceImage() }
[docs] def get_rng(self) -> Optional[RandomType]: """Return the RNG generator in use. The return can be None, which means that the routines in `numpy.random` are used, and thus are affected by calls to `numpy.random.seed`, otherwise the supplied generator is used to create random numbers. See https://numpy.org/doc/stable/reference/random/legacy.html for more information. .. versionadded:: 4.16.0 See Also -------- set_rng """ return self._rng
[docs] def set_rng(self, rng: Optional[RandomType]) -> None: """Set the RNG generator. .. versionadded:: 4.16.0 This replaces the seed argument for certain routines and the need to explicitly call `numpy.random.seed` in others. Parameters ---------- rng : numpy.random.Generator, numpy.random.RandomState, or None Determines how random numbers are created. If set to None then the routines in `numpy.random` are used, and so can be controlled by calling `numpy.random.seed`. See Also -------- get_rng """ if rng is not None and not isinstance(rng, (np.random.Generator, np.random.RandomState)): # Do not include RandomState in the error message as it is # really meant for testing/old code. raise ArgumentTypeErr("badarg", "rng", "a Generator or None") self._rng = rng
[docs] def set_plot_backend(self, backend) -> None: """Change the plot backend. This will reset any plot structures, such as that returned by get_data_plot. .. versionadded:: 4.16.0 Parameters ---------- backend : str The name of the plot backend. """ set_backend(backend) # Re-create all the plot objects self._set_plot_types() self._set_contour_types()
[docs] def save(self, filename='sherpa.save', clobber=False) -> None: """Save the current Sherpa session to a file. Parameters ---------- filename : str, optional The name of the file to write the results to. The default is 'sherpa.save'. clobber : bool, optional This flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- clean : Clear all stored session data. restore : Load in a Sherpa session from a file. sherpa.astro.ui.save_all : Save the Sherpa session as an ASCII file. Notes ----- The current Sherpa session is saved using the Python `pickle` module. The output is a binary file, which may not be portable between versions of Sherpa, but is platform independent, and contains all the data. This means that files created by `save` can be sent to collaborators to share results. Examples -------- Save the current session to the file 'sherpa.save'. >>> save() Save the current session to the file 'bestfit.sherpa', overwriting any existing version of the file. >>> save('bestfit.sherpa', clobber=True) """ _check_str_type(filename, "filename") clobber = sherpa.utils.bool_cast(clobber) if os.path.isfile(filename) and not clobber: raise IOErr("filefound", filename) fout = open(filename, 'wb') try: # Use the default version rather than fix a version pickle.dump(self, fout) finally: fout.close()
[docs] def restore(self, filename='sherpa.save') -> None: """Load in a Sherpa session from a file. .. warning:: Security risk: The imported functions and objects could contain arbitrary Python code and be malicious. Never use this function on untrusted input. Parameters ---------- filename : str, optional The name of the file to read the results from. The default is 'sherpa.save'. Raises ------ IOError If `filename` does not exist. See Also -------- clean : Clear all stored session data. save : Save the current Sherpa session to a file. Notes ----- The input to `restore` must have been created with the `save` command. This is a binary file, which may not be portable between versions of Sherpa, but is platform independent. A warning message may be created if a file saved by an older (or newer) version of Sherpa is loaded. An example of such a message is:: WARNING: Could not determine whether the model is discrete. This probably means that you have restored a session saved with a previous version of Sherpa. Falling back to assuming that the model is continuous. Examples -------- Load in the Sherpa session from 'sherpa.save'. >>> restore() Load in the session from the given file: >>> restore('/data/m31/setup.sherpa') """ _check_str_type(filename, "filename") fin = open(filename, 'rb') try: obj = pickle.load(fin) finally: fin.close() if not isinstance(obj, Session): raise ArgumentErr('nosession', filename) # Update optmethods, stats, and estmethods # obj.__dict__ should not clobber new classes! dicts = [self._methods, self._stats, self._estmethods] names = ['_methods', '_stats', '_estmethods'] for name, dic in zip(names, dicts): # update current session with user definitions dic.update(obj.__dict__[name]) # remove old items from pickle obj.__dict__.pop(name) # update current session with pickle self.__dict__.update(obj.__dict__) # TODO: is it possible for _model_autoassign_func to be None, # since NoNewAttributesAfterInit stops it from being set? # if self._model_autoassign_func is not None: for name, cmpt in self._model_components.items(): self._model_autoassign_func(name, cmpt)
def _get_show_data(self, id: Optional[IdType] = None) -> str: data_str = '' ids = self.list_data_ids() if id is not None: ids = [self._fix_id(id)] for id in ids: data_str += 'Data Set: %s\n' % id data_str += str(self.get_data(id)) + '\n\n' return data_str def _get_show_filter(self, id: Optional[IdType] = None) -> str: filt_str = '' ids = self.list_data_ids() if id is not None: ids = [self._fix_id(id)] for id in ids: filt_str += 'Data Set Filter: %s\n' % id filt_str += self.get_data(id).get_filter_expr() + '\n\n' return filt_str def _get_show_model(self, id: Optional[IdType] = None) -> str: model_str = '' ids = self.list_data_ids() mdl_ids = self.list_model_ids() if id is not None: ids = [self._fix_id(id)] for id in ids: if id in mdl_ids: model_str += 'Model: %s\n' % id model_str += str(self.get_model(id)) + '\n\n' return model_str def _get_show_source(self, id: Optional[IdType] = None) -> str: model_str = '' ids = self.list_data_ids() src_ids = self._sources.keys() if id is not None: ids = [self._fix_id(id)] for id in ids: if id in src_ids: model_str += 'Model: %s\n' % id model_str += str(self.get_source(id)) + '\n\n' return model_str def _get_show_kernel(self, id: Optional[IdType] = None) -> str: kernel_str = '' ids = self.list_data_ids() if id is not None: ids = [self._fix_id(id)] for id in ids: if id in self._psf.keys(): kernel_str += 'PSF Kernel: %s\n' % id # Show the PSF parameters kernel_str += str(self.get_psf(id)) + '\n\n' return kernel_str def _get_show_psf(self, id: Optional[IdType] = None) -> str: psf_str = '' ids = self.list_data_ids() if id is not None: ids = [self._fix_id(id)] for id in ids: if id in self._psf.keys(): psf_str += 'PSF Model: %s\n' % id # Show the PSF dataset or PSF model psf_str += str(self.get_psf(id).kernel) + '\n\n' return psf_str def _get_show_method(self) -> str: return ('Optimization Method: %s\n%s\n' % (type(self._current_method).__name__, str(self._current_method))) def _get_show_stat(self) -> str: return ('Statistic: %s\n%s\n' % (type(self._current_stat).__name__, str(self._current_stat))) def _get_show_fit(self) -> str: if self._fit_results is None: return '' fit_str = self._get_show_method() fit_str += '\n' fit_str += self._get_show_stat() fit_str += '\n' fit_str += 'Fit:' fit_str += self.get_fit_results().format() + '\n\n' return fit_str def _get_show_conf(self) -> str: if self._confidence_results is None: return '' conf_str = 'Confidence:' conf_str += self.get_conf_results().format() + '\n\n' return conf_str def _get_show_proj(self) -> str: if self._projection_results is None: return '' proj_str = 'Projection:' proj_str += self.get_proj_results().format() + '\n\n' return proj_str def _get_show_covar(self) -> str: if self._covariance_results is None: return '' covar_str = 'Covariance:' covar_str += self.get_covar_results().format() + '\n\n' return covar_str
[docs] def show_stat(self, outfile=None, clobber=False) -> None: """Display the current fit statistic. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- calc_stat : Calculate the fit statistic for a data set. calc_stat_info : Display the statistic values for the current models. get_stat : Return a fit-statistic method. show_all : Report the current state of the Sherpa session. Examples -------- >>> set_stat('cash') >>> show_stat() Statistic: Cash Maximum likelihood function """ txt = self._get_show_stat() send_to_pager(txt, outfile, clobber)
[docs] def show_method(self, outfile=None, clobber=False) -> None: """Display the current optimization method and options. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- get_method : Return an optimization method. get_method_opt : Return one or all options of the current optimization method. show_all : Report the current state of the Sherpa session. Examples -------- >>> set_method('levmar') >>> show_method() Optimization Method: LevMar name = levmar ftol = 1.19209289551e-07 xtol = 1.19209289551e-07 gtol = 1.19209289551e-07 maxfev = x epsfcn = 1.19209289551e-07 factor = 100.0 verbose = 0 """ txt = self._get_show_method() send_to_pager(txt, outfile, clobber)
[docs] def show_fit(self, outfile=None, clobber=False) -> None: """Summarize the fit results. Display the results of the last call to `fit`, including: optimization method, statistic, and details of the fit (it does not reflect any changes made after the fit, such as to the model expression or fit parameters). Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- fit : Fit one or more data sets. get_fit_results : Return the results of the last fit. list_data_ids : List the identifiers for the loaded data sets. list_model_ids : List of all the data sets with a source expression. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_fit() send_to_pager(txt, outfile, clobber)
[docs] def show_data(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Summarize the available data sets. Display information on the data sets that have been loaded. The details depend on the type of the data set (e.g. 1D, image, PHA files). Parameters ---------- id : int, str, or None, optional The data set. If not given then all data sets are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- list_data_ids : List the identifiers for the loaded data sets. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_data(id) send_to_pager(txt, outfile, clobber)
[docs] def show_filter(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Show any filters applied to a data set. Display any filters that have been applied to the independent axis or axes of the data set. Parameters ---------- id : int, str, or None, optional The data set. If not given then all data sets are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- ignore : Exclude data from the fit. sherpa.astro.ui.ignore2d : Exclude a spatial region from an image. list_data_ids : List the identifiers for the loaded data sets. notice : Include data in the fit. sherpa.astro.ui.notice2d : Include a spatial region of an image. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_filter(id) send_to_pager(txt, outfile, clobber)
[docs] def show_model(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Display the model expression used to fit a data set. This displays the model used to fit the data set, that is, the expression set by `set_model` or `set_source` combined with any instrumental responses, together with the parameter values of the model. The `show_source` function displays just the source expression, without the instrumental components (if any). Parameters ---------- id : int, str, or None, optional The data set. If not given then all source expressions are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- list_model_ids : List of all the data sets with a source expression. set_model : Set the source model expression for a data set. show_all : Report the current state of the Sherpa session. show_source : Display the source model expression for a data set. """ txt = self._get_show_psf(id) txt += self._get_show_model(id) send_to_pager(txt, outfile, clobber)
[docs] def show_source(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Display the source model expression for a data set. This displays the source model for a data set, that is, the expression set by `set_model` or `set_source`, as well as the parameter values for the model. The `show_model` function displays the model that is fit to the data; that is, it includes any instrument responses. Parameters ---------- id : int, str, or None, optional The data set. If not given then all source expressions are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- list_model_ids : List of all the data sets with a source expression. set_model : Set the source model expression for a data set. show_all : Report the current state of the Sherpa session. show_model : Display the model expression used to fit a data set. """ txt = self._get_show_source(id) send_to_pager(txt, outfile, clobber)
# DOC-TODO: how and where to describe the PSF/kernel difference # as the Notes section below is inadequate
[docs] def show_kernel(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Display any kernel applied to a data set. The kernel represents the subset of the PSF model that is used to fit the data. The `show_psf` function shows the un-filtered version. Parameters ---------- id : int, str, or None, optional The data set. If not given then all data sets are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- image_kernel : Plot the 2D kernel applied to a data set. list_data_ids : List the identifiers for the loaded data sets. load_psf : Create a PSF model. plot_kernel : Plot the 1D kernel applied to a data set. set_psf : Add a PSF model to a data set. show_all : Report the current state of the Sherpa session. show_psf : Display any PSF model applied to a data set. Notes ----- The point spread function (PSF) is defined by the full (unfiltered) PSF image or model expression evaluated over the full range of the dataset; both types of PSFs are established with `load_psf`. The kernel is the subsection of the PSF image or model which is used to convolve the data: this is changed using `set_psf`. While the kernel and PSF might be congruent, defining a smaller kernel helps speed the convolution process by restricting the number of points within the PSF that must be evaluated. """ txt = self._get_show_kernel(id) send_to_pager(txt, outfile, clobber)
# DOC-TODO: how and where to describe the PSF/kernel difference # as the Notes section below is inadequate
[docs] def show_psf(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Display any PSF model applied to a data set. The PSF model represents the full model or data set that is applied to the source expression. The `show_kernel` function shows the filtered version. Parameters ---------- id : int, str, or None, optional The data set. If not given then all data sets are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- image_psf : View the 2D PSF model applied to a data set. list_data_ids : List the identifiers for the loaded data sets. load_psf : Create a PSF model. plot_psf : Plot the 1D PSF model applied to a data set. set_psf : Add a PSF model to a data set. show_all : Report the current state of the Sherpa session. show_kernel : Display any kernel applied to a data set. Notes ----- The point spread function (PSF) is defined by the full (unfiltered) PSF image or model expression evaluated over the full range of the dataset; both types of PSFs are established with `load_psf`. The kernel is the subsection of the PSF image or model which is used to convolve the data: this is changed using `set_psf`. While the kernel and PSF might be congruent, defining a smaller kernel helps speed the convolution process by restricting the number of points within the PSF that must be evaluated. """ txt = self._get_show_psf(id) send_to_pager(txt, outfile, clobber)
[docs] def show_conf(self, outfile=None, clobber=False) -> None: """Display the results of the last conf evaluation. The output includes the best-fit model parameter values, associated confidence limits, choice of statistic, and details on the best fit location. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_conf() send_to_pager(txt, outfile, clobber)
[docs] def show_proj(self, outfile=None, clobber=False) -> None: """Display the results of the last proj evaluation. The output includes the best-fit model parameter values, associated confidence limits, choice of statistic, and details on the best fit location. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- proj : Estimate parameter confidence intervals using the projection method. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_proj() send_to_pager(txt, outfile, clobber)
[docs] def show_covar(self, outfile=None, clobber=False) -> None: """Display the results of the last covar evaluation. The output includes the best-fit model parameter values, associated confidence limits, choice of statistic, and details on the best fit location. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- covar : Estimate parameter confidence intervals using the covariance method. show_all : Report the current state of the Sherpa session. """ txt = self._get_show_covar() send_to_pager(txt, outfile, clobber)
[docs] def show_all(self, id: Optional[IdType] = None, outfile=None, clobber=False) -> None: """Report the current state of the Sherpa session. Display information about one or all of the data sets that have been loaded into the Sherpa session. The information shown includes that provided by the other ``show_xxx`` routines, and depends on the type of data that is loaded. Parameters ---------- id : int, str, or None, optional The data set. If not given then all data sets are displayed. outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- clean : Clear all stored session data. list_data_ids : List the identifiers for the loaded data sets. save : Save the current Sherpa session to a file. sherpa.astro.ui.save_all : Save the Sherpa session as an ASCII file. sherpa.astro.ui.show_bkg : Show the details of the PHA background data sets. sherpa.astro.ui.show_bkg_model : Display the background model expression for a data set. sherpa.astro.ui.show_bkg_source : Display the background model expression for a data set. show_conf : Display the results of the last conf evaluation. show_covar : Display the results of the last covar evaluation. show_data : Summarize the available data sets. show_filter : Show any filters applied to a data set. show_fit : Summarize the fit results. show_kernel : Display any kernel applied to a data set. show_method : Display the current optimization method and options. show_model : Display the model expression used to fit a data set. show_proj : Display the results of the last proj evaluation. show_psf : Display any PSF model applied to a data set. show_source : Display the source model expression for a data set. show_stat : Display the current fit statistic. """ txt = self._get_show_data(id) txt += self._get_show_model(id) txt += self._get_show_fit() txt += self._get_show_conf() txt += self._get_show_proj() txt += self._get_show_covar() send_to_pager(txt, outfile, clobber)
[docs] def get_functions(self) -> list[str]: """Return the functions provided by Sherpa. Returns ------- functions : list of str See Also -------- list_functions : Display the functions provided by Sherpa. """ funcs = [] for func in dir(self): if not func.startswith('_') and callable(getattr(self, func)): funcs.append(func) return funcs
[docs] def list_functions(self, outfile=None, clobber=False) -> None: """Display the functions provided by Sherpa. Unlike the other ``list_xxx`` commands, this does not return an array. Instead it acts like the ``show_xxx`` family of commands. Parameters ---------- outfile : str, optional If not given the results are displayed to the screen, otherwise it is taken to be the name of the file to write the results to. clobber : bool, optional If `outfile` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). Raises ------ sherpa.utils.err.IOErr If `outfile` already exists and `clobber` is ``False``. See Also -------- get_functions : Return the functions provided by Sherpa. show_all : Report the current state of the Sherpa session. """ funcs_list = self.get_functions() funcs = '' for func in funcs_list: funcs += '%s\n' % func send_to_pager(funcs, outfile, clobber)
########################################################################### # IDs and general data management ########################################################################### @staticmethod def _valid_id(id: Any) -> bool: # TODO: mark as TypeGuard[IdType] instead """Is the identifier valid for Sherpa? This does not treat None as a valid identifier. """ return (_is_integer(id) or _is_str(id)) def _fix_id(self, id: Optional[IdType]) -> IdType: """Validate the dataset id. The identifier can be any string or integer except for the plot and contour types that are supported by the `plot` and `contour` methods. Parameters ---------- id : int or str or None The dataset identifier. If set to None then the default identifier, returned by `get_default_id`, is used. Returns ------- id : int or str The identifier to use (it will only differ from the input parameter was set to None). Raises ------ sherpa.utils.err.ArgumentTypeErr If the identifier was not a string or an integer. sherpa.utils.err.IdentifierErr If the identifier was invalid. See Also -------- get_default_id, set_default_id Notes ----- Since there is currently no way to set the default background id of the DataPHA class (e.g. in unpack_pha) we do not use the _default_id setting here. """ if id is None: return self._default_id if not self._valid_id(id): raise ArgumentTypeErr("intstr") if _is_integer(id): return id if self._check_plottype(id) or self._check_contourtype(id): raise IdentifierErr("badid", id) return id def _get_plottype(self, plottype: str) -> str: """Return the name to refer to a given plot type. This supports aliases for the plot name. If an alias is used then a warning message is logged, telling the user the name they should use instead. Parameters ---------- plottype : str The requested plot type, such as "data". Returns ------- answer : str The actual plot type (which may match the input). Raises ------ PlotErr The plottype argument is not valid. """ if plottype in self._plot_types: return plottype try: answer = self._plot_types_alias[plottype] except KeyError: allowed = list(self._plot_types) raise PlotErr("wrongtype", plottype, str(allowed)) from None # This could be a warnings.warn(..., DeprecationWarning) # message but then most users would not see the message, so we # use the logger interface instead. It does mean that the # message will be repeated each time it is used. # warning("The argument '%s' is deprecated and " "'%s' should be used instead", plottype, answer) return answer def _check_plottype(self, plottype: IdType) -> bool: """Is this a valid plot type (including aliases)?""" return plottype in self._plot_types or \ plottype in self._plot_types_alias def _get_contourtype(self, plottype: str): """Return the name to refer to a given contour type.""" if plottype in self._contour_types: return plottype allowed = list(self._contour_types) raise PlotErr("wrongtype", plottype, str(allowed)) def _check_contourtype(self, plottype: IdType) -> bool: """Is this a valid contour type?""" return plottype in self._contour_types # The assumption is that itemdict has a single type for its # values. # def _get_item(self, id: Optional[IdType], itemdict: dict[IdType, T], itemdesc: str, errdesc: str ) -> T: id = self._fix_id(id) item = itemdict.get(id) if item is None: raise IdentifierErr('getitem', itemdesc, id, errdesc) return item def _set_item(self, id: Optional[IdType], item: T, itemdict: dict[IdType, T], itemtype, itemname: str, itemdesc: str ) -> None: id = self._fix_id(id) _check_type(item, itemtype, itemname, itemdesc) itemdict[id] = item
[docs] def get_default_id(self) -> IdType: """Return the default data set identifier. The Sherpa data id ties data, model, fit, and plotting information into a data set easily referenced by id. The default identifier, used by many commands, is returned by this command and can be changed by `set_default_id`. Returns ------- id : int or str The default data set identifier used by certain Sherpa functions when an identifier is not given, or set to ``None``. See Also -------- list_data_ids : List the identifiers for the loaded data sets. set_default_id : Set the default data set identifier. Notes ----- The default Sherpa data set identifier is the integer 1. Examples -------- Display the default identifier: >>> print(get_default_id()) Store the default identifier and use it as an argument to call another Sherpa routine: >>> defid = get_default_id() >>> load_arrays(defid, x, y) """ return self._default_id
[docs] def set_default_id(self, id: IdType) -> None: """Set the default data set identifier. The Sherpa data id ties data, model, fit, and plotting information into a data set easily referenced by id. The default identifier, used by many commands, is changed by this command. The current setting can be found by using `get_default_id`. Parameters ---------- id : int or str The default data set identifier to be used by certain Sherpa functions when an identifier is not given, or set to ``None``. See Also -------- get_default_id : Return the default data set identifier. list_data_ids : List the identifiers for the loaded data sets. Notes ----- The default Sherpa data set identifier is the integer 1. Examples -------- After the following, many commands, such as `set_source`, will use 'src' as the default data set identifier: >>> set_default_id('src') Restore the default data set identifier. >>> set_default_id(1) """ self._default_id = self._fix_id(id)
########################################################################### # Optimization methods ###########################################################################
[docs] def list_methods(self) -> list[str]: """List the optimization methods. Returns ------- methods : list of str A list of the names that can be used with `set_method`. See Also -------- get_method_name : Return the name of the current optimization method. set_method : Set the optimization method. Examples -------- >>> list_methods() ['gridsearch', 'levmar', 'moncar', 'neldermead', 'simplex'] """ keys = list(self._methods.keys()) keys.sort() return keys
def _get_method_by_name(self, name: str) -> OptMethod: meth = self._methods.get(name.lower()) if meth is None: raise ArgumentErr('badmethod', name) return meth
[docs] def get_method(self, name: Optional[str] = None ) -> OptMethod: """Return an optimization method. Parameters ---------- name : str, optional If not given, the current method is returned, otherwise it should be one of the names returned by the `list_methods` function. Returns ------- method : object An object representing the optimization method. Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- get_method_opt : Get the options for the current optimization method. list_methods : List the supported optimization methods. set_method : Change the optimization method. set_method_opt : Change an option of the current optimization method. Examples -------- The fields of the object returned by `get_method` can be used to view or change the method options. >>> method = ui.get_method() >>> print(method.name) levmar >>> print(method) name = levmar ftol = 1.19209289551e-07 xtol = 1.19209289551e-07 gtol = 1.19209289551e-07 maxfev = None epsfcn = 1.19209289551e-07 factor = 100.0 verbose = 0 >>> method.maxfev = 5000 """ if name is None: return self._current_method _check_str_type(name, "name") return self._get_method_by_name(name)
# DOC-TODO: is this guaranteed to be the same as get_method().name # or get_method().name.lower() and, if so, shouldn't this be # how it is coded?
[docs] def get_method_name(self) -> str: """Return the name of current Sherpa optimization method. Returns ------- name : str The name of the current optimization method, in lower case. This may not match the value sent to `set_method` because some methods can be set by multiple names. See Also -------- get_method : Return an optimization method. get_method_opt : Get the options for the current optimization method. Examples -------- >>> get_method_name() 'levmar' The 'neldermead' method can also be referred to as 'simplex': >>> set_method('simplex') >>> get_method_name() 'neldermead' """ return type(self.get_method()).__name__.lower()
# DOC-TODO: remove the list of supported methods once the # relevant documentation has been updated. #
[docs] def set_method(self, meth: Union[OptMethod, str] ) -> None: """Set the optimization method. The primary task of Sherpa is to fit a model M(p) to a set of observed data, where the vector p denotes the model parameters. An optimization method is one that is used to determine the vector of model parameter values, p0, for which the chosen fit statistic is minimized. Parameters ---------- meth : str The name of the method (case is not important). The `list_methods` function returns the list of supported values. Raises ------ sherpa.utils.err.ArgumentErr If the ``meth`` argument is not recognized. See Also -------- get_method_name : Return the name of the current optimization method. list_methods : List the supported optimization methods. set_stat : Set the fit statistic. Notes ----- The available methods include: ``levmar`` The Levenberg-Marquardt method is an interface to the MINPACK subroutine lmdif to find the local minimum of nonlinear least squares functions of several variables by a modification of the Levenberg-Marquardt algorithm [1]. ``moncar`` The implementation of the moncar method is based on [2]. ``neldermead`` The implementation of the Nelder Mead Simplex direct search is based on [3]. ``simplex`` This is another name for ``neldermead``. References ---------- 1. J.J. More, "The Levenberg Marquardt algorithm: implementation and theory," in Lecture Notes in Mathematics 630: Numerical Analysis, G.A. Watson (Ed.), Springer-Verlag: Berlin, 1978, pp.105-116. 2. Storn, R. and Price, K. "Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces." J. Global Optimization 11, 341-359, 1997. 3. Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, Paul E. Wright "Convergence Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions", SIAM Journal on Optimization,Vol. 9, No. 1 (1998), pages 112-147. Examples -------- >>> set_method('neldermead') """ if _is_str(meth): method = self._get_method_by_name(meth) else: _check_type(meth, OptMethod, 'meth', 'a method name or object') method = meth self._current_method = method # Do we need to set the RNG argument? This is not ideal, but # is a band-aid while we work out how to handle the RNG # handling in the UI layer. One option would only to update # this if the rng setting is None, but that would be # problematic to users who change the method (as it could # leave an "old" RNG state lying around), although it does # mean that if the user has explicitly set rng then it will be # over-written here. An alternative would be to remove the # "rng" setting here (i.e. hide it somehow), but then how does # this get passed to the method? # if "rng" in self._current_method.config: self._current_method.config["rng"] = self.get_rng()
def _check_method_opt(self, optname: str) -> None: _check_str_type(optname, "optname") if optname not in self._current_method.config: raise ArgumentErr('badopt', optname, self.get_method_name())
[docs] def get_method_opt(self, optname: Optional[str] = None ) -> Any: """Return one or all of the options for the current optimization method. This is a helper function since the optimization options can also be read directly using the object returned by `get_method`. Parameters ---------- optname : str, optional If not given, a dictionary of all the options are returned. When given, the individual value is returned. Returns ------- value : dictionary or value Raises ------ sherpa.utils.err.ArgumentErr If the ``optname`` argument is not recognized. See Also -------- get_method : Return an optimization method. set_method : Change the optimization method. set_method_opt : Change an option of the current optimization method. Examples -------- >>> get_method_opt('maxfev') is None True >>> mopts = get_method_opt() >>> mopts['maxfev'] is None True """ if optname is None: return self._current_method.config self._check_method_opt(optname) return self._current_method.config[optname]
[docs] def set_method_opt(self, optname: str, val: Any) -> None: """Set an option for the current optimization method. This is a helper function since the optimization options can also be set directly using the object returned by `get_method`. Parameters ---------- optname : str The name of the option to set. The `get_method` and `get_method_opt` routines can be used to find out valid values for this argument. val The new value for the option. Raises ------ sherpa.utils.err.ArgumentErr If the ``optname`` argument is not recognized. See Also -------- get_method : Return an optimization method. get_method_opt : Return one or all options of the current optimization method. set_method : Change the optimization method. Examples -------- Change the ``maxfev`` parameter for the current optimizer to 2000. >>> set_method_opt('maxfev', 2000) """ self._check_method_opt(optname) self._current_method.config[optname] = val
[docs] def get_iter_method_name(self) -> str: """Return the name of the iterative fitting scheme. Returns ------- name : {'none', 'sigmarej'} The name of the iterative fitting scheme set by `set_iter_method`. See Also -------- list_iter_methods : List the iterative fitting schemes. set_iter_method : Set the iterative-fitting scheme used in the fit. Examples -------- >>> print(get_iter_method_name()) """ return self._current_itermethod['name']
[docs] def get_iter_method_opt(self, optname: Optional[str] = None ) -> Any: """Return one or all options for the iterative-fitting scheme. The options available for the iterative-fitting methods are described in `set_iter_method_opt`. Parameters ---------- optname : str, optional If not given, a dictionary of all the options are returned. When given, the individual value is returned. Returns ------- value : dictionary or value The dictionary is empty when no iterative scheme is being used. Raises ------ sherpa.utils.err.ArgumentErr If the ``optname`` argument is not recognized. See Also -------- get_iter_method_name : Return the name of the iterative fitting scheme. set_iter_method_opt : Set an option for the iterative-fitting scheme. set_iter_method : Set the iterative-fitting scheme used in the fit. Examples -------- Display the settings of the current iterative-fitting method: >>> print(get_iter_method_opt()) Switch to the sigmarej scheme and find out the current settings: >>> set_iter_method('sigmarej') >>> opts = get_iter_method_opt() Return the 'maxiters' setting (if applicable): >>> get_iter_method_opt('maxiters') """ itermethod_opts = dict(self._current_itermethod) del itermethod_opts['name'] if optname is None: return itermethod_opts _check_str_type(optname, "optname") if optname not in itermethod_opts: raise ArgumentErr( 'badopt', optname, self._current_itermethod['name']) return itermethod_opts[optname]
[docs] def list_iter_methods(self) -> list[str]: """List the iterative fitting schemes. Returns ------- schemes : list of str A list of the names that can be used with `set_iter_method`. See Also -------- get_iter_method_name : Return the name of the iterative fitting scheme. set_iter_method : Set the iterative-fitting scheme used in the fit. Examples -------- >>> list_iter_methods() ['none', 'sigmarej'] """ keys = list(self._itermethods.keys()) keys.sort() return keys
# DOC-TODO: this information is also in sherpa/fit.py # DOC-TODO: this raises a ValueError rather than a Sherpa error class
[docs] def set_iter_method(self, meth: str) -> None: """Set the iterative-fitting scheme used in the fit. Control whether an iterative scheme should be applied to the fit. .. versionchanged:: 4.14.1 The "primini" scheme has been removed from Sherpa. Parameters ---------- meth : { 'none', 'sigmarej' } The name of the scheme used during the fit; 'none' means no scheme is used. It is only valid to change the scheme when a chi-square statistic is in use. Raises ------ TypeError When the ``meth`` argument is not recognized. See Also -------- fit : Fit a model to one or more data sets. get_iter_method_name : Return the name of the iterative fitting scheme. get_iter_method_opt : Return one or all options for the iterative-fitting scheme. list_iter_methods : List the iterative fitting schemes. set_iter_method_opt : Set an option for the iterative-fitting scheme. set_stat : Set the statistical method. Notes ----- The parameters of the schemes are described in `set_iter_method_opt`. This is a chi-square statistic where the variance is computed from model amplitudes derived in the previous iteration of the fit. This 'Iterative Weighting' ([1]) attempts to remove biased estimates of model parameters. The variance in bin i is estimated to be:: sigma^2_i^j = S(i, t_s^(j-1)) + (A_s/A_b)^2 B_off(i, t_b^(j-1)) where j is the number of iterations that have been carried out in the fitting process, B_off is the background model amplitude in bin i of the off-source region, and t_s^(j-1) and t_b^(j-1) are the set of source and background model parameter values derived during the iteration previous to the current one. The variances are set to an array of ones on the first iteration. In addition to reducing parameter estimate bias, this statistic can be used even when the number of counts in each bin is small (< 5), although the user should proceed with caution. The ``sigmarej`` scheme is based on the `IRAF ``sfit`` function <https://iraf.readthedocs.io/en/latest/tasks/noao/imred/specred/sfit.html>`_, where after a fit data points are excluded if the value of ``(data-model)/error)`` exceeds a threshold, and the data re-fit. This removal of data points continues until the fit has converged. The error removal can be asymmetric, since there are separate parameters for the lower and upper limits. References ---------- 1. `"Multiparameter linear least-squares fitting to Poisson data one count at a time", Wheaton et al. 1995, ApJ 438, 322 <https://adsabs.harvard.edu/abs/1995ApJ...438..322W>`_ Examples -------- Switch to the 'sigmarej' scheme for iterative fitting and change the low and high rejection limits to 4 and 3 respectively: >>> set_iter_method('sigmarej') >>> set_iter_method_opt('lrej') = 4 >>> set_iter_method_opt('hrej') = 3 Remove any iterative-fitting method: >>> set_iter_method('none') """ _check_str_type(meth, "meth") if meth not in self._itermethods: raise TypeError(f'{meth} is not an iterative fitting method') self._current_itermethod = self._itermethods[meth]
[docs] def set_iter_method_opt(self, optname: str, val: Any) -> None: """Set an option for the iterative-fitting scheme. Parameters ---------- optname : str The name of the option to set. The `get_iter_method_opt` routine can be used to find out valid values for this argument. val The new value for the option. Raises ------ sherpa.utils.err.ArgumentErr If the ``optname`` argument is not recognized. See Also -------- get_iter_method_name : Return the name of the iterative fitting scheme. get_iter_method_opt : Return one or all options for the iterative-fitting scheme. list_iter_methods : List the iterative fitting schemes. set_iter_method : Set the iterative-fitting scheme used in the fit. Notes ----- The supported fields for the ``sigmarej`` scheme are: grow The number of points adjacent to a rejected point that should also be removed. A value of ``0`` means that only the discrepant point is removed whereas a value of ``1`` means that the two adjacent points (one lower and one higher) will also be removed. hrej The rejection criterion in units of sigma, for data points above the model (it must be >= 0). lrej The rejection criterion in units of sigma, for data points below the model (it must be >= 0). maxiters The maximum number of iterations to perform. If this value is ``0`` then the fit will run until it has converged. Examples -------- Reject any points that are more than 5 sigma away from the best fit model and re-fit. >>> set_iter_method('sigmarej') >>> set_iter_method_opt('lrej', 5) >>> set_iter_method_opt('hrej', 5) >>> fit() """ _check_str_type(optname, "optname") if (optname not in self._current_itermethod or optname == 'name'): raise ArgumentErr( 'badopt', optname, self._current_itermethod['name']) self._current_itermethod[optname] = val
########################################################################### # Statistics ###########################################################################
[docs] def list_stats(self) -> list[str]: """List the fit statistics. Returns ------- stat : list of str A list of the names that can be used with `set_stat`. See Also -------- get_stat_name : Return the name of the current statistical method. set_stat : Set the statistical method. Examples -------- >>> list_stats() ['cash', 'chi2', 'chi2constvar', 'chi2datavar', 'chi2gehrels', 'chi2modvar', 'chi2xspecvar', 'cstat', 'leastsq', 'wstat'] """ keys = list(self._stats.keys()) keys.sort() return keys
def _get_stat_by_name(self, name: str) -> Stat: stat = self._stats.get(name.lower()) if stat is None: raise ArgumentErr('badstat', name) return stat
[docs] def get_stat(self, name: Optional[str] = None ) -> Stat: """Return the fit statisic. Parameters ---------- name : str, optional If not given, the current fit statistic is returned, otherwise it should be one of the names returned by the `list_stats` function. Returns ------- stat : object An object representing the fit statistic. Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- get_stat_name : Return the name of the current fit statistic. list_stats : List the fit statistics. set_stat : Change the fit statistic. Examples -------- Return the currently-selected statistic, display its name, and read the help documentation for it: >>> stat = get_stat() >>> stat.name 'chi2gehrels' >>> help(stat) Read the help for the "wstat" statistic: >>> help(get_stat('wstat')) """ if name is None: return self._current_stat _check_str_type(name, "name") return self._get_stat_by_name(name)
[docs] def get_stat_name(self) -> str: """Return the name of the current fit statistic. Returns ------- name : str The name of the current fit statistic method, in lower case. See Also -------- get_stat : Return a fit statistic. set_stat : Set the fit statistic. Examples -------- >>> get_stat_name() 'chi2gehrels' >>> set_stat('cash') >>> get_stat_name() 'cash' """ return type(self.get_stat()).__name__.lower()
[docs] def set_stat(self, stat: Union[str, Stat] ) -> None: """Set the statistical method. Changes the method used to evaluate the fit statistic, that is the numerical measure that determines how closely the model represents the data. Parameters ---------- stat : str or sherpa.stats.Stat instance When a string, the name of the statistic (case is not important): see `list_stats()` for supported values. Otherwise an instance of the statistic to use. Raises ------ sherpa.utils.err.ArgumentErr If the ``stat`` argument is not recognized. See Also -------- calc_stat : Calculate the statistic value for a dataset. get_stat_name : Return the current statistic method. list_stats : List the supported fit statistics. load_user_stat : Create a user-defined statistic. Notes ----- The available statistics include: cash A maximum likelihood function [1]. chi2 Chi-squared statistic using the supplied error values. chi2constvar Chi-squared with constant variance computed from the counts data. chi2datavar Chi-squared with data variance. If the data has 0 counts then the error for that bin is 0. chi2gehrels Chi-squared with gehrels method [2]. This is the default method. chi2modvar Chi-squared with model amplitude variance. chi2xspecvar Chi-squared with data variance to match XSPEC. Errors from zero-count channels (source or background) are ignored if the other channel (background or source) contains counts, or replaced by a minimum value (when both source or background are empty). It should not be used when a model is fit to the background rather than the background is subtracted from the data. cstat A maximum likelihood function (the XSPEC implementation of the Cash function) [3]. This does *not* include support for including the background. wstat A maximum likelihood function which includes the background data as part of the fit (i.e. for when it is not being explicitly modelled) (the XSPEC implementation of the Cash function) [3]. leastsq The least-squares statisic (the error is not used in this statistic). References ---------- 1. `Cash, W. "Parameter estimation in astronomy through application of the likelihood ratio", ApJ, vol 228, p. 939-947 (1979). <https://adsabs.harvard.edu/abs/1979ApJ...228..939C>`_ 2. `Gehrels, N. "Confidence limits for small numbers of events in astrophysical data", ApJ, vol 303, p. 336-346 (1986). <https://adsabs.harvard.edu/abs/1986ApJ...303..336G>`_ 3. https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html Examples -------- >>> set_stat('cash') """ if _is_str(stat): statobj = self._get_stat_by_name(stat) else: _check_type(stat, Stat, 'stat', 'a statistic name or object') statobj = stat self._current_stat = statobj
########################################################################### # Data sets ###########################################################################
[docs] def list_data_ids(self) -> list[IdType]: """List the identifiers for the loaded data sets. Returns ------- ids : list of int or str A list of the data set identifiers that have been created by commands like `load_data` and `load_arrays`. See Also -------- delete_data : Delete a data set by identifier. load_arrays : Create a data set from arrays of data. load_data : Create a data set from a file. Examples -------- In this case only one data set has been loaded: >>> list_data_ids() [1] Two data sets have been loaded, using string identifiers: >>> list_data_ids() ['nucleus', 'jet'] """ keys = list(self._data.keys()) keys.sort(key=str) # always sort by string value. return keys
[docs] def get_data(self, id: Optional[IdType] = None) -> Data: """Return the data set by identifier. The object returned by the call can be used to query and change properties of the data set. Parameters ---------- id : int, str, or None, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- instance : sherpa.data.Data The data instance. Raises ------ sherpa.utils.err.IdentifierErr No data has been loaded for this data set. See Also -------- copy_data : Copy a data set to a new identifier. delete_data : Delete a data set by identifier. load_data : Create a data set from a file. set_data : Set a data set. Examples -------- >>> d = get_data() >>> dimg = get_data('img') >>> load_arrays('tst', [10, 20, 30], [5.4, 2.3, 9.8]) >>> print(get_data('tst')) name = x = Int64[3] y = Float64[3] staterror = None syserror = None """ return self._get_item(id, self._data, 'data set', 'has not been set')
def _get_data(self, id: Optional[IdType]) -> Optional[Data]: """Return a data set or None. The same as get_data except that it returns None if the dataset does not exist. Parameters ---------- id : int, str, or None, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- instance : sherpa.data.Data or None """ return self._data.get(self._fix_id(id)) # DOC-TODO: terrible synopsis
[docs] def set_data(self, id, data=None) -> None: """Set a data set. Parameters ---------- id : int or str, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. data : instance of a sherpa.Data.Data-derived class The new contents of the data set. This can be copied from an existing data set or loaded in from a file (e.g. `unpack_data`). See Also -------- copy_data : Copy a data set to a new identifier. delete_data : Delete a data set by identifier. get_data : Return the data set by identifier. load_data : Create a data set from a file. unpack_data : Read in a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `data` parameter. If given two un-named arguments, then they are interpreted as the `id` and `data` parameters, respectively. Examples -------- >>> d1 = get_data(2) >>> set_data(d1) Copy the background data from the default data set into a new data set identified as 'bkg': >>> set_data('bkg', get_bkg()) """ if data is None: id, data = data, id self._set_item(id, data, self._data, sherpa.data.Data, 'data', 'a data set')
def _read_error(self, filename, *args, **kwargs): err = sherpa.io.get_ascii_data(filename, *args, **kwargs)[1].pop() return err # DOC-NOTE: also in sherpa.astro.utils # DOC-NOTE: is ncols really 2 here? Does it make sense?
[docs] def load_staterror(self, id, filename=None, ncols=2, *args, **kwargs) -> None: """Load the statistical errors from an ASCII file. Read in a column or image from a file and use the values as the statistical errors for a data set. This over rides the errors calculated by any statistic, such as ``chi2gehrels`` or ``chi2datavar``. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the ASCII file to read in. ncols : int, optional The number of columns to read in (the first ``ncols`` columns in the file). colkeys : array of str, optional An array of the column name to read in. The default is ``None``. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. See Also -------- get_staterror : Return the statistical error on the dependent axis of a data set. load_syserror : Load the systematic errors from a file. set_staterror : Set the statistical errors on the dependent axis of a data set. set_stat : Set the statistical method. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. See `unpack_data` for a description of the supported file format. Examples -------- Read in the first column from 'tbl.dat': >>> load_staterror('tbl.dat') Use the column labelled 'col3' >>> load_staterror('tbl.dat', colkeys=['col3']) Read in the first column from the file 'errors.dat' as the statistical errors for the 'core' data set: >>> load_staterror('core', 'errors.dat') """ if filename is None: id, filename = filename, id self.set_staterror(id, self._read_error(filename, ncols=ncols, *args, **kwargs))
# DOC-NOTE: also in sherpa.astro.utils # DOC-NOTE: is ncols really 2 here? Does it make sense?
[docs] def load_syserror(self, id, filename=None, ncols=2, *args, **kwargs) -> None: """Load the systematic errors from an ASCII file. Read in a column or image from a file and use the values as the systematic errors for a data set. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the ASCII file to read in. ncols : int, optional The number of columns to read in (the first ``ncols`` columns in the file). colkeys : array of str, optional An array of the column name to read in. The default is ``None``. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. See Also -------- get_syserror : Return the systematic error on the dependent axis of a data set. load_staterror : Load the statistical errors from a file. set_syserror : Set the systematic errors on the dependent axis of a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. See `unpack_data` for a description of the supported file format. Examples -------- Read in the first column from 'tbl.dat': >>> load_syserror('tbl.dat') Use the column labelled 'col3' >>> load_syserror('tbl.dat', colkeys=['col3']) Read in the first column from the file 'errors.dat' as the systematic errors for the 'core' data set: >>> load_syserror('core', 'errors.dat') """ if filename is None: id, filename = filename, id self.set_syserror(id, self._read_error(filename, ncols=ncols, *args, **kwargs))
# DOC-NOTE: also in sherpa.astro.utils # DOC-TODO: does ncols make sense here? (have removed for now)
[docs] def load_filter(self, id, filename=None, ignore=False, ncols=2, *args, **kwargs) -> None: """Load the filter array from an ASCII file and add to a data set. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the ASCII file that contains the filter information. ignore : bool, optional If ``False`` (the default) then include bins with a non-zero filter value, otherwise exclude these bins. colkeys : array of str, optional An array of the column name to read in. The default is ``None``. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. See Also -------- get_filter : Return the filter expression for a data set. ignore : Exclude data from the fit. notice : Include data in the fit. save_filter : Save the filter array to a file. set_filter : Set the filter array of a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. See `unpack_data` for a description of the supported file format. Examples -------- Read in the first column of the file and apply it to the default data set: >>> load_filter('filt.dat') Select the FILTER column of the file: >>> load_filter(2, 'filt.dat', colkeys=['FILTER']) """ if filename is None: id, filename = filename, id self.set_filter(id, self._read_error( filename, ncols=ncols, *args, **kwargs), ignore=ignore)
[docs] def set_filter(self, id, val=None, ignore=False) -> None: """Set the filter array of a data set. Parameters ---------- id : int or str, optional The data set to use. If not given then the default identifier is used, as returned by `get_default_id`. val : array The array of filter values (``0`` or ``1``). The size should match the array returned by `get_dep`. ignore : bool, optional If ``False`` (the default) then include bins with a non-zero filter value, otherwise exclude these bins. See Also -------- get_dep : Return the dependent axis of a data set. get_filter : Return the filter expression for a data set. ignore : Exclude data from the fit. load_filter : Load the filter array from a file and add to a data set. notice : Include data in the fit. save_filter : Save the filter array to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `val` parameter. If given two un-named arguments, then they are interpreted as the `id` and `val` parameters, respectively. Examples -------- Ignore those bins with a value less 20. >>> d = get_dep() >>> set_filter(d >= 20) """ if val is None: val, id = id, val d = self.get_data(id) set_filter(d, val, ignore=ignore)
# also in sherpa.astro.utils
[docs] def set_dep(self, id, val=None) -> None: """Set the dependent axis of a data set. Parameters ---------- id : int or str, optional The data set to use. If not given then the default identifier is used, as returned by `get_default_id`. val : array The array of values for the dependent axis. See Also -------- dataspace1d : Create the independent axis for a 1D data set. dataspace2d : Create the independent axis for a 2D data set. get_dep : Return the dependent axis of a data set. load_arrays : Create a data set from array values. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `val` parameter. If given two un-named arguments, then they are interpreted as the `id` and `val` parameters, respectively. Examples -------- Create a 1D data set with values at (0,4), (2,10), (4,12), (6,8), (8,2), and (10,12): >>> dataspace1d(0, 10, 2, dstype=Data1D) >>> set_dep([4, 10, 12, 8, 2, 12]) Set the values for the data set 'src': >>> set_dep('src', y1) """ if val is None: val, id = id, val d = self.get_data(id) set_dep(d, val)
# DOC-NOTE: also in sherpa.utils
[docs] def set_staterror(self, id, val=None, fractional=False) -> None: """Set the statistical errors on the dependent axis of a data set. These values override the errors calculated by any statistic, such as ``chi2gehrels`` or ``chi2datavar``. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. val : array or scalar The systematic error. fractional : bool, optional If ``False`` (the default value), then the `val` parameter is the absolute value, otherwise the `val` parameter represents the fractional error, so the absolute value is calculated as ``get_dep() * val`` (and `val` must be a scalar). See Also -------- load_staterror : Set the statistical errors on the dependent axis of a data set. load_syserror : Set the systematic errors on the dependent axis of a data set. set_syserror : Set the systematic errors on the dependent axis of a data set. get_error : Return the errors on the dependent axis of a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `val` parameter. If given two un-named arguments, then they are interpreted as the `id` and `val` parameters, respectively. Examples -------- Set the statistical error for the default data set to the value in ``dys`` (a scalar or an array): >>> set_staterror(dys) Set the statistical error on the 'core' data set to be 5% of the data values: >>> set_staterror('core', 0.05, fractional=True) """ if val is None: val, id = id, val d = self.get_data(id) set_error(d, "staterror", val, fractional=fractional)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def set_syserror(self, id, val=None, fractional=False) -> None: """Set the systematic errors on the dependent axis of a data set. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. val : array or scalar The systematic error. fractional : bool, optional If ``False`` (the default value), then the `val` parameter is the absolute value, otherwise the `val` parameter represents the fractional error, so the absolute value is calculated as ``get_dep() * val`` (and `val` must be a scalar). See Also -------- load_staterror : Set the statistical errors on the dependent axis of a data set. load_syserror : Set the systematic errors on the dependent axis of a data set. set_staterror : Set the statistical errors on the dependent axis of a data set. get_error : Return the errors on the dependent axis of a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `val` parameter. If given two un-named arguments, then they are interpreted as the `id` and `val` parameters, respectively. Examples -------- Set the systematic error for the default data set to the value in ``dys`` (a scalar or an array): >>> set_syserror(dys) Set the systematic error on the 'core' data set to be 5% of the data values: >>> set_syserror('core', 0.05, fractional=True) """ if val is None: val, id = id, val err = None d = self.get_data(id) set_error(d, "syserror", val, fractional=fractional)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def get_staterror(self, id: Optional[IdType] = None, filter=False): """Return the statistical error on the dependent axis of a data set. The function returns the statistical errors on the values (dependenent axis) of a data set. These may have been set explicitly - either when the data set was created or with a call to `set_staterror` - or as defined by the chosen fit statistic (such as "chi2gehrels"). Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filter : bool, optional Should the filter attached to the data set be applied to the return value or not. The default is ``False``. Returns ------- staterrors : array The statistical error for each data point. This may be estimated from the data (e.g. with the ``chi2gehrels`` statistic) or have been set explicitly (`set_staterror`). The size of this array depends on the `filter` argument. Raises ------ sherpa.utils.err.IdentifierErr If the data set does not exist. See Also -------- get_error : Return the errors on the dependent axis of a data set. get_indep : Return the independent axis of a data set. get_syserror : Return the systematic errors on the dependent axis of a data set. list_data_ids : List the identifiers for the loaded data sets. set_staterror : Set the statistical errors on the dependent axis of a data set. Notes ----- The default behavior is to not apply any filter defined on the independent axes to the results, so that the return value is for all points (or bins) in the data set. Set the `filter` argument to `True` to apply this filter. Examples -------- If not explicitly given, the statistical errors on a data set may be calculated from the data values (the independent axis), depending on the chosen statistic: >>> load_arrays(1, [10, 15, 19], [4, 5, 9]) >>> set_stat('chi2datavar') >>> get_staterror() array([ 2. , 2.23606798, 3. ]) >>> set_stat('chi2gehrels') >>> get_staterror() array([ 3.17944947, 3.39791576, 4.122499 ]) If the statistical errors are set - either when the data set is created or with a call to `set_staterror` - then these values will be used, no matter the statistic: >>> load_arrays(1, [10, 15, 19], [4, 5, 9], [2, 3, 5]) >>> set_stat('chi2datavar') >>> get_staterror() array([2, 3, 5]) >>> set_stat('chi2gehrels') >>> get_staterror() array([2, 3, 5]) """ return self.get_data(id).get_staterror(filter, self.get_stat().calc_staterror)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def get_syserror(self, id: Optional[IdType] = None, filter=False): """Return the systematic error on the dependent axis of a data set. The function returns the systematic errors on the values (dependenent axis) of a data set. It is an error if called on a data set with no systematic errors (which are set with `set_syserror`). Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filter : bool, optional Should the filter attached to the data set be applied to the return value or not. The default is ``False``. Returns ------- syserrors : array The systematic error for each data point. The size of this array depends on the `filter` argument. Raises ------ sherpa.utils.err.DataErr If the data set has no systematic errors. sherpa.utils.err.IdentifierErr If the data set does not exist. See Also -------- get_error : Return the errors on the dependent axis of a data set. get_indep : Return the independent axis of a data set. get_staterror : Return the statistical errors on the dependent axis of a data set. list_data_ids : List the identifiers for the loaded data sets. set_syserror : Set the systematic errors on the dependent axis of a data set. Notes ----- The default behavior is to not apply any filter defined on the independent axes to the results, so that the return value is for all points (or bins) in the data set. Set the `filter` argument to `True` to apply this filter. Examples -------- Return the systematic error for the default data set: >>> yerr = get_syserror() Return an array that has been filtered to match the data: >>> yerr = get_syserror(filter=True) Return the filtered errors for data set "core": >>> yerr = get_syserror("core", filter=True) """ d = self.get_data(id) id = self._fix_id(id) err = d.get_syserror(filter) if err is None: raise sherpa.utils.err.DataErr('nosyserr', id) return err
# DOC-NOTE: also in sherpa.astro.utils
[docs] def get_error(self, id: Optional[IdType] = None, filter=False): """Return the errors on the dependent axis of a data set. The function returns the total errors (a quadrature addition of the statistical and systematic errors) on the values (dependent axis) of a data set. The individual components can be retrieved with the `get_staterror` and `get_syserror` functions. Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filter : bool, optional Should the filter attached to the data set be applied to the return value or not. The default is ``False``. Returns ------- errors : array The error for each data point, formed by adding the statistical and systematic errors in quadrature. The size of this array depends on the `filter` argument. Raises ------ sherpa.utils.err.IdentifierErr If the data set does not exist. See Also -------- get_error : Return the errors on the dependent axis of a data set. get_indep : Return the independent axis of a data set. get_staterror : Return the statistical errors on the dependent axis of a data set. get_syserror : Return the systematic errors on the dependent axis of a data set. list_data_ids : List the identifiers for the loaded data sets. Notes ----- The default behavior is to not apply any filter defined on the independent axes to the results, so that the return value is for all points (or bins) in the data set. Set the `filter` argument to `True` to apply this filter. Examples -------- Return the error values for the default data set, ignoring any filter applied to it: >>> err = get_error() Ensure that the return values are for the selected (filtered) points in the default data set (the return array may be smaller than in the previous example): >>> err = get_error(filter=True) Find the errors for the "core" data set: >>> err = get_error('core', filter=True) """ return self.get_data(id).get_error(filter, self.get_stat().calc_staterror)
# DOC-NOTE: also in sherpa.astro.utils # DOC-NOTE: shouldn't this expose a filter parameter?
[docs] def get_indep(self, id: Optional[IdType] = None): """Return the independent axes of a data set. This function returns the coordinates of each point, or pixel, in the data set. Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- axis : tuple of arrays The independent axis values. These are the values at which the model is evaluated during fitting. Raises ------ sherpa.utils.err.IdentifierErr If the data set does not exist. See Also -------- get_dep : Return the dependent axis of a data set. list_data_ids : List the identifiers for the loaded data sets. Examples -------- For a one-dimensional data set, the X values are returned: >>> load_arrays(1, [10, 15, 19], [4, 5, 9]) >>> get_indep() (array([10, 15, 19]),) For a 2D data set the X0 and X1 values are returned: >>> x0 = [10, 15, 12, 19] >>> x1 = [12, 14, 10, 17] >>> y = [4, 5, 9, -2] >>> load_arrays(2, x0, x1, y, Data2D) >>> get_indep(2) (array([10, 15, 12, 19]), array([12, 14, 10, 17])) """ return self.get_data(id).get_indep()
# DOC-NOTE: also in sherpa.astro.utils
[docs] def get_dep(self, id: Optional[IdType] = None, filter=False): """Return the dependent axis of a data set. This function returns the data values (the dependent axis) for each point or pixel in the data set. Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filter : bool, optional Should the filter attached to the data set be applied to the return value or not. The default is ``False``. Returns ------- axis : array The dependent axis values. The model estimate is compared to these values during fitting. Raises ------ sherpa.utils.err.IdentifierErr If the data set does not exist. See Also -------- get_error : Return the errors on the dependent axis of a data set. get_indep : Return the independent axis of a data set. list_data_ids : List the identifiers for the loaded data sets. Examples -------- >>> load_arrays(1, [10, 15, 19], [4, 5, 9]) >>> get_dep() array([4, 5, 9]) >>> x0 = [10, 15, 12, 19] >>> x1 = [12, 14, 10, 17] >>> y = [4, 5, 9, -2] >>> load_arrays(2, x0, x1, y, Data2D) >>> get_dep(2) array([ 4, 5, 9, -2]) If the ``filter`` flag is set then the return will be limited to the data that is used in the fit: >>> load_arrays(1, [10, 15, 19], [4, 5, 9]) >>> ignore_id(1, 17, None) >>> get_dep() array([4, 5, 9]) >>> get_dep(filter=True) array([4, 5]) """ return self.get_data(id).get_y(filter)
[docs] def get_dims(self, id: Optional[IdType] = None, filter=False): """Return the dimensions of the data set. Parameters ---------- id : int, str, or None, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. filter : bool, optional If ``True`` then apply any filter to the data set before returning the dimensions. The default is ``False``. Returns ------- dims : a tuple of int See Also -------- ignore : Exclude data from the fit. sherpa.astro.ui.ignore2d : Exclude a spatial region from an image. notice : Include data in the fit. sherpa.astro.ui.notice2d : Include a spatial region of an image. Examples -------- Display the dimensions for the default data set: >>> print(get_dims()) Find the number of bins in dataset 'a2543' without and with any filters applied to it: >>> nall = get_dims('a2543') >>> nfilt = get_dims('a2543', filter=True) """ return self.get_data(id).get_dims(filter)
# DOC-NOTE: should there be a version in sherpa.astro.utils with a bkg_id # parameter?
[docs] def get_filter(self, id: Optional[IdType] = None, format: Optional[str] = None, delim: Optional[str] = None ) -> str: """Return the filter expression for a data set. This returns the filter expression, created by one or more calls to `ignore` and `notice`, for the data set. .. versionchanged:: 4.17.0 The format and delim arguments can now be set. .. versionchanged:: 4.14.0 The filter expressions have been tweaked for Data1DInt and PHA data sets (when using energy or wavelength units) and now describe the full range of the bins, rather than the mid-points. Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. format : str or None, optional If set, use this rather than the default format value for the dataset. delim : str or None, optional If set, use this rather than the default delim value for the dataset. Returns ------- filter : str The empty string or a string expression representing the filter used. For PHA data dets the units are controlled by the analysis setting for the data set. Raises ------ sherpa.utils.err.ArgumentErr If the data set does not exist. See Also -------- ignore : Exclude data from the fit. load_filter : Load the filter array from a file and add to a data set. notice : Include data in the fit. save_filter : Save the filter array to a file. show_filter : Show any filters applied to a data set. set_filter : Set the filter array of a data set. Examples -------- The default filter is the full dataset, given in the format ``lowval:hival`` (for a `Data1D` dataset like this these are inclusive limits): >>> load_arrays(1, [10, 15, 20, 25], [5, 7, 4, 2]) >>> get_filter() '10.0000:25.0000' Change the formatting of the output: >>> get_filter(format="%d", delim="-") "10-25" The `notice` call restricts the data to the range between 14 and 30. The resulting filter is the combination of this range and the data: >>> notice(14, 30) >>> get_filter() '15.0000:25.0000' Ignoring the point at ``x=20`` means that only the points at ``x=15`` and ``x=25`` remain, so a comma-separated list is used: >>> ignore(19, 22) >>> get_filter() '15.0000,25.0000' The filter equivalent to the per-bin array of filter values: >>> set_filter([1, 1, 0, 1]) >>> get_filter() '10.0000:15.0000,25.0000' For an integrated data set (Data1DInt and DataPHA with energy or wavelength units) >>> load_arrays(1, [10, 15, 20, 25], [15, 20, 23, 30], [5, 7, 4, 2], Data1DInt) >>> get_filter() '10.0000:30.0000' For integrated datasets the limits are now inclusive only for the lower limit, but in this the end-point ends within a bin so is is included: >>> notice(17, 28) >>> get_filter() '15.0000:30.0000' There is no data in the range 23 to 24 so the ignore doesn't change anything: >>> ignore(23, 24) >>> get_filter() '15.0000:30.0000' However it does match the range 22 to 23 and so changes the filter: >>> ignore(22, 23) >>> get_filter() '15.0000:20.0000,25:000:30.0000' Return the filter for data set 3: >>> get_filter(3) """ kwargs = {} if format is not None: kwargs["format"] = format if delim is not None: kwargs["delim"] = delim return self.get_data(id).get_filter(**kwargs)
[docs] def copy_data(self, fromid: IdType, toid: IdType) -> None: """Copy a data set, creating a new identifier. After copying the data set, any changes made to the original data set (that is, the `fromid` identifier) will not be reflected in the new (the `toid` identifier) data set. Parameters ---------- fromid : int or str The input data set. toid : int or str The output data set. Raises ------ sherpa.utils.err.IdentifierErr If there is no data set with a ``fromid`` identifier. See Also -------- delete_data, load_data, set_data Examples -------- >>> copy_data(1, 2) Rename the data set with identifier 2 to "orig", and then delete the old data set: >>> copy_data(2, "orig") >>> delete_data(2) """ data = self.get_data(fromid) data = copy.deepcopy(data) self.set_data(toid, data)
# DOC-TODO: this does not delete the source expression; # is this intended or a bug?
[docs] def delete_data(self, id: Optional[IdType] = None) -> None: """Delete a data set by identifier. The data set, and any associated structures - such as the ARF and RMF for PHA data sets - are removed. Parameters ---------- id : int, str, or None, optional The data set to delete. If not given then the default identifier is used, as returned by `get_default_id`. See Also -------- clean : Clear all stored session data. copy_data : Copy a data set to a new identifier. delete_model : Delete the model expression from a data set. get_default_id : Return the default data set identifier. list_data_ids : List the identifiers for the loaded data sets. Notes ----- The source expression is not removed by this function. Examples -------- Delete the data from the default data set: >>> delete_data() Delete the data set identified as 'src': >>> delete_data('src') """ idval = self._fix_id(id) self._data.pop(idval, None)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def dataspace1d(self, start, stop, step=1, numbins=None, id: Optional[IdType] = None, dstype=sherpa.data.Data1DInt ) -> None: """Create the independent axis for a 1D data set. Create an "empty" one-dimensional data set by defining the grid on which the points are defined (the independent axis). The values are set to 0. Parameters ---------- start : number The minimum value of the axis. stop : number The maximum value of the axis. step : number, optional The separation between each grid point. This is not used if ``numbins`` is set. numbins : int, optional The number of grid points. This overrides the ``step`` setting. id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. dstype : data class to use, optional What type of data is to be used. Supported values include `Data1DInt` (the default) and `Data1D`. See Also -------- dataspace2d : Create the independent axis for a 2D data set. get_dep : Return the dependent axis of a data set. get_indep : Return the independent axes of a data set. set_dep : Set the dependent axis of a data set. Notes ----- The meaning of the ``stop`` parameter depends on whether it is a binned or unbinned data set (as set by the ``dstype`` parameter). Examples -------- Create a binned data set, starting at 1 and with a bin-width of 1. >>> dataspace1d(1, 5, 1) >>> print(get_indep()) (array([ 1., 2., 3., 4.]), array([ 2., 3., 4., 5.])) This time for an un-binned data set: >>> dataspace1d(1, 5, 1, dstype=Data1D) >>> print(get_indep()) (array([ 1., 2., 3., 4., 5.]),) Specify the number of bins rather than the grid spacing: >>> dataspace1d(1, 5, numbins=5, id=2) >>> (xlo, xhi) = get_indep(2) >>> xlo array([ 1. , 1.8, 2.6, 3.4, 4.2]) >>> xhi array([ 1.8, 2.6, 3.4, 4.2, 5. ]) >>> dataspace1d(1, 5, numbins=5, id=3, dstype=Data1D) >>> (x, ) = get_indep(3) >>> x array([ 1., 2., 3., 4., 5.]) """ # support non-integrated grids with inclusive boundaries if dstype in (sherpa.data.Data1D,): stop += step xlo, xhi, y = sherpa.utils.dataspace1d(start, stop, step=step, numbins=numbins) args = [xlo, xhi, y] if dstype is not sherpa.data.Data1DInt: args = [xlo, y] self.set_data(id, dstype('dataspace1d', *args))
# DOC-NOTE: also in sherpa.astro.utils
[docs] def dataspace2d(self, dims, id: Optional[IdType] = None, dstype=sherpa.data.Data2D ) -> None: """Create the independent axis for a 2D data set. Create an "empty" two-dimensional data set by defining the grid on which the points are defined (the independent axis). The values are set to 0. Parameters ---------- dims : sequence of 2 number The dimensions of the grid in ``(width,height)`` order. id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. dstype : data class to use, optional What type of data is to be used. Supported values include `Data2D` (the default) and `Data2DInt`. See Also -------- dataspace1d : Create the independent axis for a 1D data set. get_dep : Return the dependent axis of a data set. get_indep : Return the independent axes of a data set. set_dep : Set the dependent axis of a data set. Examples -------- Create a 200 pixel by 150 pixel grid (number of columns by number of rows) and display it (each pixel has a value of 0): >>> dataspace2d([200, 150]) >>> image_data() Create a data space called "fakeimg": >>> dataspace2d([nx,ny], id="fakeimg") """ x0, x1, y, shape = sherpa.utils.dataspace2d(dims) dataset = None if issubclass(dstype, sherpa.data.Data2DInt): dataset = dstype('dataspace2d', x0 - 0.5, x1 - 0.5, x0 + 0.5, x1 + 0.5, y, shape) else: dataset = dstype('dataspace2d', x0, x1, y, shape) self.set_data(id, dataset)
[docs] def fake(self, id: Optional[IdType] = None, method=sherpa.utils.poisson_noise ) -> None: """Simulate a data set. Take a data set, evaluate the model for each bin, and then use this value to create a data value from each bin. The default behavior is to use a Poisson distribution, with the model value as the expectation value of the distribution. Parameters ---------- id : int, str, or None, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. method : func The function used to create a random realisation of a data set. See Also -------- dataspace1d : Create the independent axis for a 1D data set. dataspace2d : Create the independent axis for a 2D data set. get_dep : Return the dependent axis of a data set. load_arrays : Create a data set from array values. set_model : Set the source model expression for a data set. Notes ----- The function for the ``method`` argument accepts a single argument, the data values, and should return an array of the same shape as the input, with the data values to use. The function can be called on any data set, it does not need to have been created with `dataspace1d` or `dataspace2d`. Specific data set types may have their own, specialized, version of this function. Examples -------- Create a random realisation of the model - a constant plus gaussian line - for the range x=-5 to 5. >>> dataspace1d(-5, 5, 0.5, dstype=Data1D) >>> set_source(gauss1d.gline + const1d.bgnd) >>> bgnd.c0 = 2 >>> gline.fwhm = 4 >>> gline.ampl = 5 >>> gline.pos = 1 >>> fake() >>> plot_data() >>> plot_model(overplot=True) For a 2D data set, display the simulated data, model, and residuals: >>> dataspace2d([150, 80], id='fakeimg') >>> set_source('fakeimg', beta2d.src + polynom2d.bg) >>> src.xpos, src.ypos = 75, 40 >>> src.r0, src.alpha = 15, 2.3 >>> src.ellip, src.theta = 0.4, 1.32 >>> src.ampl = 100 >>> bg.c, bg.cx1, bg.cy1 = 3, 0.4, 0.3 >>> fake('fakeimg') >>> image_fit('fakeimg') """ data = self.get_data(id) model = self.get_model(id) ndep = method(data.eval_model(model), rng=self.get_rng()) self.set_dep(id, ndep)
@staticmethod def _read_data(readfunc, filename, *args, **kwargs): _check_str_type(filename, "filename") return readfunc(filename, *args, **kwargs) # DOC-NOTE: also in sherpa.astro.utils # DOC-TODO: What data types are supported here?
[docs] def unpack_arrays(self, *args): """Create a sherpa data object from arrays of data. The object returned by `unpack_arrays` can be used in a `set_data` call. Parameters ---------- args : array_like Arrays of data. The order, and number, is determined by the `dstype` parameter, and listed in the `load_arrays` routine. dstype The data set type. The default is `Data1D` and values include: `Data1D`, `Data1DInt`, `Data2D`, and `Data2DInt`. It is expected to be derived from `sherpa.data.BaseData`. Returns ------- instance The data set object matching the requested ``dstype``. See Also -------- get_data : Return the data set by identifier. load_arrays : Create a data set from array values. set_data : Set a data set. unpack_data : Create a sherpa data object from a file. Examples -------- Create a 1D (unbinned) data set from the values in the x and y arrays. Use the returned object to create a data set labelled "oned": >>> x = [1, 3, 7, 12] >>> y = [2.3, 3.2, -5.4, 12.1] >>> dat = unpack_arrays(x, y) >>> set_data("oned", dat) Include statistical errors on the data: >>> edat = unpack_arrays(x, y, dy) Create a "binned" 1D data set, giving the low, and high edges of the independent axis (xlo and xhi respectively) and the dependent values for this grid (y): >>> hdat = unpack_arrays(xlo, xhi, y, Data1DInt) """ return sherpa.io.read_arrays(*args)
# DOC-NOTE: also in sherpa.utils
[docs] def unpack_data(self, filename, ncols=2, colkeys=None, dstype=sherpa.data.Data1D, sep=' ', comment='#', require_floats=True): """Create a sherpa data object from an ASCII file. This function is used to read in columns from an ASCII file and convert them to a Sherpa data object. Parameters ---------- filename : str The name of the ASCII file to read in. ncols : int, optional The number of columns to read in (the first `ncols` columns in the file). colkeys : array of str, optional An array of the column name to read in. The default is ``None``. dstype : data class to use, optional What type of data is to be used. Supported values include `Data1D` (the default), `Data1DInt`, `Data2D`, and `Data2DInt`. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. require_floats : bool, optional If `True` (the default), non-numeric data values will raise a `ValueError`. Returns ------- instance The data set object. Raises ------ ValueError If a column value can not be converted into a numeric value and the `require_floats` parameter is True. See Also -------- get_data : Return the data set by identifier. load_arrays : Create a data set from array values. load_data : Load a data set from a file. set_data : Set a data set. unpack_arrays : Create a sherpa data object from arrays of data. Notes ----- The file reading is performed by `sherpa.io.get_ascii_data`, which reads in each line from the file, strips out any unsupported characters (replacing them by the `sep` argument), skips empty lines, and then identifies whether it is a comment or data line. The list of unsupported characters are: tab, new line, carriage return, comma, semi-colon, colon, space, and "|". The last comment line before the data is used to define the column names, splitting the line by the `sep` argument. If there are no comment lines then the columns are named starting at `col1`, `col2`, increasing up to the number of columns. Data lines are separated into columns - splitting by the `sep` comment - and then converted to NumPy arrays. If the `require_floats` argument is ``True`` then the column will be converted to the `sherpa.utils.SherpaFloat` type, with an error raised if this fails. An error is raised if the number of columns per row is not constant. If the `colkeys` argument is used then a case-sensitive match is used to determine what columns to return. Examples -------- Create a data object from the first two columns of the file "src.dat" and use it to create a Sherpa data set called "src": >>> dat = unpack_data('src.dat') >>> set_data('src', dat) Read in the first three columns - the independent axis (x), the dependent variable (y), and the error on y: >>> dat = unpack_data('src.dat', ncols=3) Read in the X and Y columns from the file. The last line before the data must contain the column names: >>> dat = unpack_data('src.dat', colkeys=['X', 'Y']) Read in a histogram: >>> cols = ['XLO', 'XHI', 'Y'] >>> idat = unpack_data('hist.dat', colkeys=cols, ... dstype=ui.Data1DInt) """ return self._read_data(sherpa.io.read_data, filename, ncols, colkeys, sep, dstype, comment, require_floats)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def load_data(self, id, filename=None, ncols=2, colkeys=None, dstype=sherpa.data.Data1D, sep=' ', comment='#', require_floats=True) -> None: """Load a data set from an ASCII file. Parameters ---------- id : int or str The identifier for the data set to use. filename : str The name of the ASCII file to read in. ncols : int, optional The number of columns to read in (the first ``ncols`` columns in the file). colkeys : array of str, optional An array of the column name to read in. The default is ``None``. dstype : data class to use, optional What type of data is to be used. Supported values include `Data1D` (the default), `Data1DInt`, `Data2D`, and `Data2DInt`. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. require_floats : bool, optional If ``True`` (the default), non-numeric data values will raise a `ValueError`. Raises ------ ValueError If a column value can not be converted into a numeric value and the ``require_floats`` parameter is True. See Also -------- get_data : Return the data set by identifier. load_arrays : Create a data set from array values. unpack_arrays : Create a sherpa data object from arrays of data. unpack_data : Create a sherpa data object from a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. See `unpack_data` for a description of the supported file format. Examples -------- >>> load_data('tbl.dat') >>> load_data('hist.dat', dstype=Data1DInt) >>> cols = ['rmid', 'sur_bri', 'sur_bri_err'] >>> load_data(2, 'profile.dat', colkeys=cols) """ if filename is None: id, filename = filename, id self.set_data(id, self.unpack_data(filename, ncols=ncols, colkeys=colkeys, dstype=dstype, sep=sep, comment=comment, require_floats=require_floats))
# DOC-NOTE: also in sherpa.astro.utils # DOC-TODO: rework the Data type notes section (also needed by unpack_arrays) # @loggable(with_id = True)
[docs] def load_arrays(self, id: IdType, *args) -> None: """Create a data set from array values. Parameters ---------- id : int or str The identifier for the data set to use. *args Two or more arrays, followed by the type of data set to create. See Also -------- copy_data : Copy a data set to a new identifier. delete_data : Delete a data set by identifier. get_data : Return the data set by identifier. load_data : Create a data set from a file. set_data : Set a data set. unpack_arrays : Create a sherpa data object from arrays of data. Notes ----- The data type identifier, which defaults to `Data1D`, determines the number, and order, of the required inputs. +------------+-----------------+--------------------+ | Identifier | Required Fields | Optional Fields | +============+=================+====================+ | Data1D | x, y | statistical error, | | | | systematic error | +------------+-----------------+--------------------+ | Data1DInt | xlo, xhi, y | statistical error, | | | | systematic error | +------------+-----------------+--------------------+ | Data2D | x0, x1, y | shape, | | | | statistical error, | | | | systematic error | +------------+-----------------+--------------------+ | Data2DInt | x0lo, x1lo, | shape, | | | x0hi, x1hi, y | statistical error, | | | | systematic error | +------------+-----------------+--------------------+ The ``shape`` argument should be a tuple giving the size of the data ``(ny,nx)``. Examples -------- Create a 1D data set with three points: >>> load_arrays(1, [10, 12, 15], [4.2, 12.1, 8.4]) Create a 1D data set, with the identifier 'prof', from the arrays ``x`` (independent axis), ``y`` (dependent axis), and ``dy`` (statistical error on the dependent axis): >>> load_arrays('prof', x, y, dy) Explicitly define the type of the data set: >>> load_arrays('prof', x, y, dy, Data1D) Data set 1 is a histogram, where the bins cover the range 1-3, 3-5, and 5-7 with values 4, 5, and 9 respectively. >>> load_arrays(1, [1, 3, 5], [3, 5, 7], [4, 5, 9], Data1DInt) """ self.set_data(id, self.unpack_arrays(*args))
def _save_type(self, objtype: str, id, filename, **kwargs) -> None: if filename is None: id, filename = filename, id _check_str_type(filename, "filename") d = self.get_data(id) args = None fields = None if type(d) in (sherpa.data.Data2D, sherpa.data.Data2DInt): if objtype == 'delchi': # raise AttributeErr('badfunc', "save_delchi()", "images") raise AttributeError("save_delchi() can not be used " + "with 2D datasets") funcname = f"get_{objtype}_image" imgtype = getattr(self, funcname) obj = imgtype(id) args = [obj.y] fields = [str(objtype).upper()] else: funcname = f"get_{objtype}_plot" plottype = getattr(self, funcname) obj = plottype(id) args = [obj.x, obj.y] fields = ["X", str(objtype).upper()] sherpa.io.write_arrays(filename, args, fields, **kwargs) # DOC-NOTE: also in sherpa.astro.utils with a different interface
[docs] def save_arrays(self, filename, args, fields=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Write a list of arrays to an ASCII file. Parameters ---------- filename : str The name of the file to write the array to. args : array of arrays The arrays to write out. fields : array of str The column names (should match the size of `args`). clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_data : Save the data to a file. Examples -------- Write the x and y columns from the default data set to the file 'src.dat': >>> x = get_indep() >>> y = get_dep() >>> save_arrays('src.dat', [x, y]) Use the column names "r" and "surbri" for the columns: >>> save_arrays('prof.txt', [x, y], fields=["r", "surbri"], ... clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) _check_str_type(filename, "filename") sherpa.io.write_arrays(filename, args, fields, sep, comment, clobber, linebreak, format)
# DOC-NOTE: also in sherpa.utils with a different interface
[docs] def save_source(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the model values to a file. The model is evaluated on the grid of the data set, but does not include any instrument response (such as a PSF). Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional This flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IdentifierErr If no model has been set for this data set. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_data : Save the data to a file. save_model : Save the model values to a file. set_full_model : Define the convolved model expression for a data set. set_model : Set the source model expression for a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``SOURCE`` (for 1D data). The residuals array respects any filter setting for the data set. Examples -------- Write the model to the file "model.dat": >>> save_source('model.dat') Write the model from the data set 'jet' to the file "jet.mdl": >>> save_source('jet', "jet.mdl", clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) self._save_type('source', id, filename, clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.utils with a different interface
[docs] def save_model(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the model values to a file. The model is evaluated on the grid of the data set, including any instrument response (such as a PSF). Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IdentifierErr If no model has been set for this data set. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_data : Save the data to a file. save_source : Save the model values to a file. set_model : Set the source model expression for a data set. set_full_model : Define the convolved model expression for a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``MODEL`` (for 1D data). The residuals array respects any filter setting for the data set. Examples -------- Write the model to the file "model.dat": >>> save_model('model.dat') Write the model from the data set 'jet' to the file "jet.mdl": >>> save_model('jet', "jet.mdl", clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) self._save_type('model', id, filename, clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.utils with a different interface
[docs] def save_resid(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the residuals (data-model) to a file. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IdentifierErr If no model has been set for this data set. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_data : Save the data to a file. save_delchi : Save the ratio of residuals (data-model) to error to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``RESID``. The residuals array respects any filter setting for the data set. Examples -------- Write the residuals to the file "resid.dat": >>> save_resid('resid.dat') Write the residuals from the data set 'jet' to the file "resid.dat": >>> save_resid('jet', "resid.dat", clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) self._save_type('resid', id, filename, clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.utils with a different interface
[docs] def save_delchi(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the ratio of residuals (data-model) to error to a file. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IdentifierErr If no model has been set for this data set. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_data : Save the data to a file. save_resid : Save the residuals (data-model) to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``DELCHI``. The residuals array respects any filter setting for the data set. Examples -------- Write the residuals to the file "delchi.dat": >>> save_delchi('delchi.dat') Write the residuals from the data set 'jet' to the file "delchi.dat": >>> save_resid('jet', "delchi.dat", clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) self._save_type('delchi', id, filename, clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.astro.utils
[docs] def save_data(self, id, filename=None, fields=None, sep=' ', comment='#', clobber=False, linebreak='\n', format='%g' ) -> None: """Save the data to a file. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. The data is written out as an ASCII file. fields : array of str, optional The attributes of the data set to write out. If ``None``, write out all the columns. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IdentifierErr If there is no matching data set. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- save_arrays : Write a list of arrays to a file. save_delchi : Save the ratio of residuals (data-model) to error to a file. save_error : Save the errors to a file. save_filter : Save the filter array to a file. save_resid : Save the residuals (data-model) to a file. save_staterror : Save the statistical errors to a file. save_syserror : Save the statistical errors to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. Examples -------- Write the default data set out to the ASCII file 'src.dat': >>> save_data('src.dat') Only write out the x, y, and staterror columns for data set 'rprof' to the file 'prof.out', over-writing it if it already exists: >>> save_data('rprof', 'prof.out', clobber=True, ... fields=['x', 'y', 'staterror']) """ clobber = sherpa.utils.bool_cast(clobber) if filename is None: id, filename = filename, id _check_str_type(filename, "filename") sherpa.io.write_data(filename, self.get_data(id), fields, sep, comment, clobber, linebreak, format)
# DOC-NOTE: also in sherpa.astro.utils with a different interface
[docs] def save_filter(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the filter array to a file. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.DataErr If the data set has not been filtered. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- load_filter : Load the filter array from a file and add to a data set. save_data : Save the data to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``FILTER``. Examples -------- Write the filter from the default data set as an ASCII file: >>> save_filter('filt.dat') """ clobber = sherpa.utils.bool_cast(clobber) if filename is None: id, filename = filename, id _check_str_type(filename, "filename") d = self.get_data(id) id = self._fix_id(id) if d.mask is False: raise sherpa.utils.err.DataErr('notmask') if not np.iterable(d.mask): raise sherpa.utils.err.DataErr('nomask', id) x = d.get_indep(filter=False)[0] mask = np.asarray(d.mask, int) self.save_arrays(filename, [x, mask], fields=['X', 'FILTER'], clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.astro.utils with a different interface
[docs] def save_staterror(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the statistical errors to a file. If the statistical errors have not been set explicitly, then the values calculated by the statistic - such as ``chi2gehrels`` or ``chi2datavar`` - will be used. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- load_staterror : Load the statistical errors from a file. save_error : Save the errors to a file. save_syserror : Save the systematic errors to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``STAT_ERR``. Examples -------- Write out the statistical errors from the default data set to the file 'errs.dat'. >>> save_staterror('errs.dat') Over-write the file it it already exists, and take the data from the data set "jet": >>> save_staterror('jet', 'err.out', clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) if filename is None: id, filename = filename, id _check_str_type(filename, "filename") x = self.get_data(id).get_indep(filter=False)[0] err = self.get_staterror(id, filter=False) self.save_arrays(filename, [x, err], fields=['X', 'STAT_ERR'], clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.astro.utils with a different interface
[docs] def save_syserror(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the statistical errors to a file. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IOErr If the data set does not contain any systematic errors. sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- load_syserror : Load the systematic errors from a file. save_error : Save the errors to a file. save_staterror : Save the statistical errors to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``SYS_ERR``. Examples -------- Write out the systematic errors from the default data set to the file 'errs.dat'. >>> save_syserror('errs.dat') Over-write the file it it already exists, and take the data from the data set "jet": >>> save_syserror('jet', 'err.out', clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) if filename is None: id, filename = filename, id _check_str_type(filename, "filename") x = self.get_data(id).get_indep(filter=False)[0] err = self.get_syserror(id, filter=False) self.save_arrays(filename, [x, err], fields=['X', 'SYS_ERR'], clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
# DOC-NOTE: also in sherpa.astro.utils with a different interface
[docs] def save_error(self, id, filename=None, clobber=False, sep=' ', comment='#', linebreak='\n', format='%g' ) -> None: """Save the errors to a file. The total errors for a data set are the quadrature combination of the statistical and systematic errors. The systematic errors can be 0. If the statistical errors have not been set explicitly, then the values calculated by the statistic - such as ``chi2gehrels`` or ``chi2datavar`` - will be used. Parameters ---------- id : int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id`. filename : str The name of the file to write the array to. clobber : bool, optional If `filename` is not ``None``, then this flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. linebreak : str, optional Indicate a new line. The default is ``'\\n'``. format : str, optional The format used to write out the numeric values. The default is ``'%g%'``. Raises ------ sherpa.utils.err.IOErr If `filename` already exists and `clobber` is ``False``. See Also -------- get_error : Return the errors on the dependent axis of a data set. load_staterror : Load the statistical errors from a file. load_syserror : Load the systematic errors from a file. save_data : Save the data to a file. save_staterror : Save the statistical errors to a file. save_syserror : Save the systematic errors to a file. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `filename` parameter. If given two un-named arguments, then they are interpreted as the `id` and `filename` parameters, respectively. The remaining parameters are expected to be given as named arguments. The output file contains the columns ``X`` and ``ERR``. Examples -------- Write out the errors from the default data set to the file 'errs.dat'. >>> save_error('errs.dat') Over-write the file it it already exists, and take the data from the data set "jet": >>> save_error('jet', 'err.out', clobber=True) """ clobber = sherpa.utils.bool_cast(clobber) if filename is None: id, filename = filename, id _check_str_type(filename, "filename") x = self.get_data(id).get_indep(filter=False)[0] err = self.get_error(id, filter=False) self.save_arrays(filename, [x, err], fields=['X', 'ERR'], clobber=clobber, sep=sep, comment=comment, linebreak=linebreak, format=format)
def _notice_expr(self, expr: Optional[str] = None, **kwargs) -> None: ids = self.list_data_ids() for vals in sherpa.utils.parse_expr(expr): self.notice_id(ids, *vals, **kwargs) def _notice_expr_id(self, ids: Union[IdType, Sequence[IdType]], expr: Optional[str] = None, **kwargs) -> None: for vals in sherpa.utils.parse_expr(expr): self.notice_id(ids, *vals, **kwargs) # DOC-NOTE: inclusion of bkg_id is technically wrong, as it # should only be in the sherpa.astro.ui version, but it is not # worth creating a copy of the routine just for this. #
[docs] def notice(self, lo=None, hi=None, **kwargs) -> None: """Include data in the fit. Select one or more ranges of data to include by filtering on the independent axis value. The filter is applied to all data sets. .. versionchanged:: 4.15.0 The change in the filter is now reported for each dataset. .. versionchanged:: 4.14.0 Integrated data sets - so Data1DInt and DataPHA when using energy or wavelengths - now ensure that the `hi` argument is exclusive and better handling of the `lo` argument when it matches a bin edge. This can result in the same filter selecting a smaller number of bins than in earlier versions of Sherpa. Parameters ---------- lo : number or str, optional The lower bound of the filter (when a number) or a string expression listing ranges in the form ``a:b``, with multiple ranges allowed, where the ranges are separated by a ``,``. The term ``:b`` means include everything up to ``b`` (an exclusive limit for integrated datasets), and ``a:`` means include everything that is higher than, or equal to, ``a``. hi : number, optional The upper bound of the filter when ``lo`` is not a string. bkg_id : int or str, optional The filter will be applied to the associated background component of the data set if ``bkg_id`` is set. Only PHA data sets support this option; if not given, then the filter is applied to all background components as well as the source data. See Also -------- notice_id : Include data for a data set. sherpa.astro.ui.notice2d : Include a spatial region in an image. ignore : Exclude data from the fit. show_filter : Show any filters applied to a data set. Notes ----- The order of `ignore` and `notice` calls is important, and the results are a union, rather than intersection, of the combination. If `notice` is called on an un-filtered data set, then the ranges outside the noticed range are excluded: it can be thought of as if `ignore` had been used to remove all data points. If `notice` is called after a filter has been applied then the filter is applied to the existing data. For binned data sets, the bin is included if the noticed range falls anywhere within the bin, but excluding the ``hi`` value (except for PHA data sets when using ``channel`` units). The units used depend on the ``analysis`` setting of the data set, if appropriate. To filter a 2D data set by a shape use `notice2d`. The report of the change in the filter expression can be controlled with the `SherpaVerbosity` context manager, as shown in the examples below. Examples -------- Since the `notice` call is applied to an un-filtered data set, the filter chooses only those points that lie within the range 12 <= X <= 18. >>> load_arrays(1, [10, 15, 20, 30], [5, 10, 7, 13]) >>> notice(12, 28) dataset 1: 10:30 -> 15:20 x >>> get_dep(filter=True) array([10, 7]) As no limits are given, the whole data set is included: >>> notice() dataset 1: 15:20 -> 10:30 x >>> get_dep(filter=True) array([ 5, 10, 7, 13]) The `ignore` call excludes the first two points, but the `notice` call adds back in the second point: >>> ignore(hi=17) dataset 1: 10:30 -> 20:30 x >>> notice(12, 16) dataset 1: 20:30 -> 15:30 x >>> get_dep(filter=True) array([10, 7, 13]) Only include data points in the range 8<=X<=12 and 18<=X=22: >>> ignore() dataset 1: 15:30 x -> no data >>> notice("8:12, 18:22") dataset 1: no data -> 10 x dataset 1: 10 -> 10,20 x >>> get_dep(filter=True) array([5, 7]) The messages from `notice` and `ignore` use the standard Sherpa logging infrastructure, and so can be ignored by using `SherpaVerbosity`: >>> from sherpa.utils.logging import SherpaVerbosity >>> with SherpaVerbosity("WARN"): ... notice() ... """ if len(self._data) == 0: raise IdentifierErr("nodatasets") # TODO: do we still expect to get bytes here? if lo is not None and isinstance(lo, (str, np.bytes_)): return self._notice_expr(lo, **kwargs) # Jump through the data sets in "order". # notice_data_range(self.get_data, self.list_data_ids(), lo, hi, kwargs)
# DOC-NOTE: inclusion of bkg_id is technically wrong, as it # should only be in the sherpa.astro.ui version, but it is not # worth creating a copy of the routine just for this. #
[docs] def ignore(self, lo=None, hi=None, **kwargs) -> None: """Exclude data from the fit. Select one or more ranges of data to exclude by filtering on the independent axis value. The filter is applied to all data sets. .. versionchanged:: 4.15.0 The change in the filter is now reported for each dataset. .. versionchanged:: 4.14.0 Integrated data sets - so Data1DInt and DataPHA when using energy or wavelengths - now ensure that the `hi` argument is exclusive and better handling of the `lo` argument when it matches a bin edge. This can result in the same filter selecting a smaller number of bins than in earlier versions of Sherpa. Parameters ---------- lo : number or str, optional The lower bound of the filter (when a number) or a string expression listing ranges in the form ``a:b``, with multiple ranges allowed, where the ranges are separated by a ``,``. The term ``:b`` means exclude everything up to ``b`` (an exclusive limit for integrated datasets), and ``a:`` means exclude everything that is higher than, or equal to, ``a``. hi : number, optional The upper bound of the filter when ``lo`` is not a string. bkg_id : int or str, optional The filter will be applied to the associated background component of the data set if ``bkg_id`` is set. Only PHA data sets support this option; if not given, then the filter is applied to all background components as well as the source data. See Also -------- ignore_id : Exclude data from the fit for a data set. sherpa.astro.ui.ignore2d : Exclude a spatial region from an image. notice : Include data in the fit. show_filter : Show any filters applied to a data set. Notes ----- The order of `ignore` and `notice` calls is important, and the results are a union, rather than intersection, of the combination. For binned data sets, the bin is excluded if the ignored range falls anywhere within the bin. The units used depend on the ``analysis`` setting of the data set, if appropriate. To filter a 2D data set by a shape use `ignore2d`. The report of the change in the filter expression can be controlled with the `SherpaVerbosity` context manager, as shown in the examples below. Examples -------- Ignore all data points with an X value (the independent axis) between 12 and 18. For this one-dimensional data set, this means that the second bin is ignored: >>> load_arrays(1, [10, 15, 20, 30], [5, 10, 7, 13]) >>> ignore(12, 18) dataset 1: 10:30 -> 10,20:30 x >>> get_dep(filter=True) array([ 5, 7, 13]) Filtering X values that are 25 or larger means that the last point is also ignored: >>> ignore(lo=25) dataset 1: 10,20:30 -> 10,20 x >>> get_dep(filter=True) array([ 5, 7]) The `notice` call removes the previous filter, and then a multi-range filter is applied to exclude values between 8 and 12 and 18 and 22: >>> notice() dataset 1: 10,20 -> 10:30 x >>> ignore("8:12, 18:22") dataset 1: 10:30 -> 15:30 x dataset 1: 15:30 -> 15,30 x >>> get_dep(filter=True) array([10, 13]) The `SherpaVerbosity` context manager can be used to hide the screen output: >>> from sherpa.utils.logging import SherpaVerbosity >>> with SherpaVerbosity("WARN"): ... ignore(hi=12) ... """ kwargs['ignore'] = True self.notice(lo, hi, **kwargs)
# DOC-NOTE: inclusion of bkg_id is technically wrong, as it # should only be in the sherpa.astro.ui version, but it is not # worth creating a copy of the routine just for this. #
[docs] def notice_id(self, ids: Union[IdType, Sequence[IdType]], lo=None, hi=None, **kwargs ) -> None: """Include data from the fit for a data set. Select one or more ranges of data to include by filtering on the independent axis value. The filter is applied to the given data set, or data sets. .. versionchanged:: 4.15.0 The change in the filter is now reported for the dataset. .. versionchanged:: 4.14.0 Integrated data sets - so Data1DInt and DataPHA when using energy or wavelengths - now ensure that the `hi` argument is exclusive and better handling of the `lo` argument when it matches a bin edge. This can result in the same filter selecting a smaller number of bins than in earlier versions of Sherpa. Parameters ---------- ids : int or str, or array of int or str The data set, or sets, to use. lo : number or str, optional The lower bound of the filter (when a number) or a string expression listing ranges in the form ``a:b``, with multiple ranges allowed, where the ranges are separated by a ``,``. The term ``:b`` means include everything up to ``b`` (an exclusive limit for integrated datasets), and ``a:`` means include everything that is higher than, or equal to, ``a``. hi : number, optional The upper bound of the filter when ``lo`` is not a string. bkg_id : int or str, optional The filter will be applied to the associated background component of the data set if ``bkg_id`` is set. Only PHA data sets support this option; if not given, then the filter is applied to all background components as well as the source data. See Also -------- ignore_id : Exclude data from the fit for a data set. sherpa.astro.ui.ignore2d : Exclude a spatial region from an image. notice : Include data in the fit. show_filter : Show any filters applied to a data set. Notes ----- The order of `ignore` and `notice` calls is important. The units used depend on the ``analysis`` setting of the data set, if appropriate. To filter a 2D data set by a shape use `ignore2d`. The report of the change in the filter expression can be controlled with the `SherpaVerbosity` context manager, as shown in the examples below. Examples -------- Include all data points with an X value (the independent axis) between 12 and 18 for data set 1: >>> notice_id(1, 12, 18) dataset 1: 10:30 -> 15:20 x Include the range 0.5 to 7, for data sets 1, 2, and 3 (the screen output will depend on the existing data and filters applied to them): >>> notice_id([1, 2, 3], 0.5, 7) dataset 1: 0.00146:14.9504 -> 0.4818:9.0374 Energy (keV) dataset 2: 0.00146:14.9504 -> 0.4964:13.6072 Energy (keV) dataset 3: 0.00146:14.9504 -> 0.4234:9.3878 Energy (keV) Apply the filter 0.5 to 2 and 2.2 to 7 to the data sets "core" and "jet", and hide the screen output: >>> from sherpa.utils.logging import SherpaVerbosity >>> with SherpaVerbsity("WARN"): ... notice_id(["core", "jet"], "0.5:2, 2.2:7") ... """ if ids is None: raise ArgumentTypeErr('badarg', 'ids', 'an identifier or list of identifiers') if self._valid_id(ids): idvals = (ids,) else: try: idvals = tuple(ids) except TypeError: raise ArgumentTypeErr('badarg', 'ids', 'an identifier or list of identifiers') from None # TODO: do we still expect to get bytes here? if lo is not None and isinstance(lo, (str, np.bytes_)): return self._notice_expr_id(idvals, lo, **kwargs) # Unlike notice() we do not sort the id list as this # was set by the user. # notice_data_range(self.get_data, idvals, lo, hi, kwargs)
# DOC-NOTE: inclusion of bkg_id is technically wrong, as it # should only be in the sherpa.astro.ui version, but it is not # worth creating a copy of the routine just for this. #
[docs] def ignore_id(self, ids: Union[IdType, Sequence[IdType]], lo=None, hi=None, **kwargs ) -> None: """Exclude data from the fit for a data set. Select one or more ranges of data to exclude by filtering on the independent axis value. The filter is applied to the given data set, or sets. .. versionchanged:: 4.15.0 The change in the filter is now reported for the dataset. .. versionchanged:: 4.14.0 Integrated data sets - so Data1DInt and DataPHA when using energy or wavelengths - now ensure that the `hi` argument is exclusive and better handling of the `lo` argument when it matches a bin edge. This can result in the same filter selecting a smaller number of bins than in earlier versions of Sherpa. Parameters ---------- ids : int or str, or array of int or str The data set, or sets, to use. lo : number or str, optional The lower bound of the filter (when a number) or a string expression listing ranges in the form ``a:b``, with multiple ranges allowed, where the ranges are separated by a ``,``. The term ``:b`` means exclude everything up to ``b`` (an exclusive limit for integrated datasets), and ``a:`` means exclude everything that is higher than, or equal to, ``a``. hi : number, optional The upper bound of the filter when ``lo`` is not a string. bkg_id : int or str, optional The filter will be applied to the associated background component of the data set if ``bkg_id`` is set. Only PHA data sets support this option; if not given, then the filter is applied to all background components as well as the source data. See Also -------- ignore : Exclude data from the fit. sherpa.astro.ui.ignore2d : Exclude a spatial region from an image. notice_id : Include data from the fit for a data set. show_filter : Show any filters applied to a data set. Notes ----- The order of `ignore` and `notice` calls is important. The units used depend on the ``analysis`` setting of the data set, if appropriate. To filter a 2D data set by a shape use `ignore2d`. Examples -------- Ignore all data points with an X value (the independent axis) between 12 and 18 for data set 1: >>> ignore_id(1, 12, 18) dataset 1: 10:30 -> 10,20:30 x Ignore the range up to 0.5 and 7 and above, for data sets 1, 2, and 3: >>> ignore_id([1, 2, 3], hi=0.5) dataset 1: 0.00146:14.9504 -> 0.584:14.9504 Energy (keV) dataset 2: 0.00146:14.9504 -> 0.6424:14.9504 Energy (keV) dataset 3: 0.00146:14.9504 -> 0.511:14.9504 Energy (keV) >>> ignore_id([1, 2, 3], lo=7) dataset 1: 0.584:14.9504 -> 0.584:4.4384 Energy (keV) dataset 2: 0.6424:14.9504 -> 0.6424:5.1392 Energy (keV) dataset 3: 0.511:14.9504 -> 0.511:4.526 Energy (keV) Apply the same filter as the previous example, but to data sets "core" and "jet", and hide the screen output: >>> from sherpa.utils.logging import SherpaVerbosity >>> with SherpaVerbsity("WARN"): ... ignore_id(["core", "jet"], ":0.5,7:") ... """ kwargs['ignore'] = True self.notice_id(ids, lo, hi, **kwargs)
########################################################################### # Models ###########################################################################
[docs] def paramprompt(self, val=False) -> None: """Should the user be asked for the parameter values when creating a model? When `val` is ``True``, calls to `set_model` will cause the user to be prompted for each parameter in the expression. The prompt includes the parameter name and default value, in ``[]``: the valid responses are - return which accepts the default - value which changes the parameter value - value, min which changes the value and the minimum value - value, min, max which changes the value, minimum, and maximum values The ``value``, ``min``, and ``max`` components are optional, so ",-5" will use the default parameter value and set its minimum to -5, while "2,,10" will change the parameter value to 2 and its maximum to 10, but leave the minimum at its default. If any value is invalid then the parameter is re-prompted. Parameters ---------- val : bool, optional If ``True``, the user will be prompted to enter each parameter value, including support for changing the minimum and maximum values, when a model component is created. The default is ``False``. See Also -------- set_model : Set the source model expression for a data set. set_par : Set the value, limits, or behavior of a model parameter. show_model : Display the model expression used to fit a data set. Notes ----- Setting this to ``True`` only makes sense in an interactive environment. It is designed to be similar to the parameter prompting provided by `XSPEC <https://heasarc.gsfc.nasa.gov/xanadu/xspec/>`_. Examples -------- In the following, the default parameter settings are accepted for the ``pl.gamma`` parameter, the starting values for the ``pl.ref`` and ``gline.pos`` values are changed, the starting value and ranges of both the ``pl.ampl`` and ``gline.ampl`` parameters are set, and the ``gline.fwhm`` parameter is set to 100, with its maximum changed to 10000. >>> paramprompt(True) >>> set_source(powlaw1d.pl + gauss1d.gline) pl.gamma parameter value [1] pl.ref parameter value [1] 4500 pl.ampl parameter value [1] 1.0e-5,1.0e-8,0.01 gline.fwhm parameter value [10] 100,,10000 gline.pos parameter value [0] 4900 gline.ampl parameter value [1] 1.0e-3,1.0e-7,1 """ self._paramprompt = sherpa.utils.bool_cast(val)
def _add_model_types(self, module, baselist=(sherpa.models.ArithmeticModel,) ) -> None: if not isinstance(baselist, tuple): baselist = (baselist,) for name in module.__all__: cls = getattr(module, name) for base in baselist: if is_subclass(cls, base): break else: continue name = name.lower() self._model_types[name] = ModelWrapper(self, cls) self._model_globals.update(self._model_types)
[docs] def add_model(self, modelclass, args=(), kwargs={}) -> None: """Create a user-defined model class. Create a model from a class. The name of the class can then be used to create model components - e.g. with `set_model` or `create_model_component` - as with any existing Sherpa model. Parameters ---------- modelclass A class derived from `sherpa.models.model.ArithmeticModel`. This class defines the functional form and the parameters of the model. args Arguments for the class constructor. kwargs Keyword arguments for the class constructor. See Also -------- create_model_component : Create a model component. list_models : List the available model types. load_table_model : Load tabular data and use it as a model component. load_user_model : Create a user-defined model. set_model : Set the source model expression for a data set. Notes ----- The `load_user_model` function is designed to make it easy to add a model, but the interface is not the same as the existing models (such as having to call both `load_user_model` and `add_user_pars` for each new instance). The `add_model` function is used to add a model as a Python class, which is more work to set up, but then acts the same way as the existing models. Examples -------- The following example creates a model type called "mygauss1d" which will behave exactly the same as the existing "gauss1d" model. Normally the class used with `add_model` would add new functionality. >>> from sherpa.models import Gauss1D >>> class MyGauss1D(Gauss1D): ... pass ... >>> add_model(MyGauss1D) >>> set_source(mygauss1d.g1 + mygauss1d.g2) """ name = modelclass.__name__.lower() if not is_subclass(modelclass, sherpa.models.ArithmeticModel): raise TypeError(f"model class '{name}' is not a derived class " "from sherpa.models.ArithmeticModel") self._model_types[name] = ModelWrapper(self, modelclass, args, kwargs) self._model_globals.update(self._model_types) _assign_obj_to_main(name, self._model_types[name])
# # Model components #
[docs] def get_model_autoassign_func(self ) -> Callable[[str, Model], None]: """Return the method used to create model component identifiers. Provides access to the function which is used by `create_model_component` and when creating model components directly to add an identifier in the current Python namespace. Returns ------- func The model function set by `set_model_autoassign_func`. See Also -------- create_model_component : Create a model component. set_model : Set the source model expression for a data set. set_model_autoassign_func : Set the method used to create model component identifiers. """ return self._model_autoassign_func
# DOC-TODO: what does func=None mean? If you try None then it # fails with AttributeError: 'Session' object attribute # '_model_autoassign_func' cannot be replaced with a non-callable attribute
[docs] def set_model_autoassign_func(self, func: Optional[Callable[[str, Model], None]] = None ) -> None: """Set the method used to create model component identifiers. When a model component is created, the default behavior is to add the component to the default Python namespace. This is controlled by a function which can be changed with this routine. Parameters ---------- func : function reference The function to use: this should accept two arguments, a string (component name), and the model instance. See Also -------- create_model_component : Create a model component. get_model_autoassign_func : Return the method used to create model component identifiers set_model : Set the source model expression for a data set. Notes ----- The default assignment function first renames a model component to include the model type and user-defined identifier. It then updates the '__main__' module's dictionary with the model identifier as the key and the model instance as the value. Similarly, it updates the '__builtin__' module's dictionary just like '__main__' for compatibility with IPython. """ if (func is not None) and (not callable(func)): raise ArgumentTypeErr('badarg', 'func', 'a function or other callable object') self._model_autoassign_func = func
[docs] def list_models(self, show: str = "all") -> list[str]: """List the available model types. Parameters ---------- show : { 'all', '1d', '2d', 'xspec' }, optional What type of model should be returned. The default is 'all'. An unrecognized value is treated as 'all'. Returns ------- models : list of str See Also -------- create_model_components : Create a model component. list_model_components : List the current model components. Examples -------- >>> models = list_models() >>> models[0:5] ['absorptionedge', 'absorptiongaussian', 'absorptionlorentz', 'absorptionvoigt', 'accretiondisk'] >>> list_models('2d') ['beta2d', 'box2d', 'const2d', 'delta2d', 'devaucouleurs2d', 'disk2d', 'gauss2d', 'lorentz2d', 'normgauss2d', 'polynom2d', 'scale2d', 'sersic2d', 'shell2d', 'sigmagauss2d'] """ keys = list(self._model_types.keys()) keys.sort() show = show.strip().lower() for item in ["arfmodel", "convolutionmodel", "multiresponsesummodel", "pileuprmfmodel", "jdpileup", "rmfmodel", "tablemodel", "usermodel", "psfmodel"]: if item in keys: keys.remove(item) select = None if show.startswith("xspec"): select = lambda x: x.startswith('xs') elif show.startswith("1d"): select = lambda x: (not x.startswith('xs')) and (not x.endswith("2d")) elif show.startswith("2d"): select = lambda x: x.endswith('2d') if select is None: return keys return list(filter(select, keys))
[docs] def list_model_components(self) -> list[str]: """List the names of all the model components. Models are created either directly - by using the form ``mname.mid``, where ``mname`` is the name of the model, such as ``gauss1d``, and ``mid`` is the name of the component - or with the `create_model_component` function, which accepts ``mname`` and ``mid`` as separate arguments. This function returns all the ``mid`` values that have been created. Returns ------- ids : list of str The identifiers for all the model components that have been created. They do not need to be associated with a source expression (i.e. they do not need to have been included in a call to `set_model`). See Also -------- create_model_component : Create a model component. delete_model_component : Delete a model component. list_models : List the available model types. list_model_ids : List of all the data sets with a source expression. set_model : Set the source model expression for a data set. Examples -------- The ``gal`` and ``pl`` model components are created - as versions of the ``xsphabs`` and ``powlaw1d`` model types - which means that the list of model components returned as ``mids`` will contain both strings. >>> set_model(xsphabs.gal * powlaw1d.pl) >>> mids = list_model_components() >>> 'gal' in mids True >>> 'pl' in mids True The model component does not need to be included as part of a source expression for it to be included in the output of this function: >>> create_model_component('gauss2d', 'gsrc') >>> 'gsrc' in list_model_components() True """ keys = list(self._model_components.keys()) keys.sort() return keys
def _add_model_component(self, cmpt: Model) -> None: # If model component name is a model type name # or session function name, don't create it, raise # warning if cmpt.name in self._model_types: modeltype = cmpt.name del cmpt raise IdentifierErr('badidmodel', modeltype) if cmpt.name.lower() in _builtin_symbols_: modeltype = cmpt.name del cmpt raise IdentifierErr('badidnative', modeltype) self._model_components[cmpt.name] = cmpt if self._model_autoassign_func is not None: self._model_autoassign_func(cmpt.name, cmpt) @overload def _get_model_component(self, name: str, require: Literal[False] ) -> Optional[Model]: ... @overload def _get_model_component(self, name: str, require: Literal[True] ) -> Model: ... def _get_model_component(self, name, require=False): """Access the model component by name. Parameters ---------- name : str The name of the model component. require : bool, optional If `True` then the name must exist. Returns ------- component : sherpa.models.model.Model instance or None `None` is returned if the name does not exist and the require argument is `False`. Raises ------ sherpa.utils.err.IdentifierErr If the name does not exist and require is `True`. """ cmpt = self._model_components.get(name) require = sherpa.utils.bool_cast(require) if require and (cmpt is None): raise IdentifierErr('nomodelcmpt', name) return cmpt # DOC-TODO: can send in a model variable, but this is just the # identity function, so not worth documenting
[docs] def get_model_component(self, name: str) -> Model: """Returns a model component given its name. Parameters ---------- name : str The name of the model component. Returns ------- component : a sherpa.models.model.Model instance The model component object. Raises ------ sherpa.utils.err.IdentifierErr If there is no model component with the given ``name``. See Also -------- create_model_component : Create a model component. get_model : Return the model expression for a data set. get_source : Return the source model expression for a data set. list_model_components : List the names of all the model components. set_model : Set the source model expression for a data set. Notes ----- The model instances are named as modeltype.username, and it is the ``username`` component that is used here to access the instance. Examples -------- When a model component is created, a variable is created that contains the model instance. The instance can also be returned with `get_model_component`, which can then be queried or used to change the model settings: >>> create_model_component('gauss1d', 'gline') >>> gmodel = get_model_component('gline') >>> gmodel.name 'gauss1d.gline' >>> print([p.name for p in gmodel.pars]) ['fwhm', 'pos', 'ampl'] >>> gmodel.fwhm.val = 12.2 >>> gmodel.fwhm.freeze() """ # If user mistakenly passes an actual model reference, # just return the reference if isinstance(name, Model): return name _check_str_type(name, "name") return self._get_model_component(name, require=True)
[docs] def create_model_component(self, typename=None, name=None): """Create a model component. Model components created by this function are set to their default values. Components can also be created directly using the syntax ``typename.name``, such as in calls to `set_model` and `set_source` (unless you have called `set_model_autoassign_func` to change the default model auto-assignment setting). Parameters ---------- typename : str The name of the model. This should match an entry from the return value of `list_models`, and defines the type of model. name : str The name used to refer to this instance, or component, of the model. A Python variable will be created with this name that can be used to inspect and change the model parameters, as well as use it in model expressions. Returns ------- model : the sherpa.models.Model object created See Also -------- delete_model_component : Delete a model component. get_model_component : Returns a model component given its name. list_models : List the available model types. list_model_components : List the names of all the model components. set_model : Set the source model expression for a data set. set_model_autoassign_func : Set the method used to create model component identifiers. Notes ----- This function can over-write an existing component. If the over-written component is part of a source expression - as set by `set_model` - then the model evaluation will still use the old model definition (and be able to change the fit parameters), but direct access to its parameters is not possible since the name now refers to the new component (this is true using direct access, such as ``mname.parname``, or with `set_par`). Examples -------- Create an instance of the ``powlaw1d`` model called ``pl``, and then freeze its ``gamma`` parameter to 2.6. >>> create_model_component("powlaw1d", "pl") >>> pl.gamma = 2.6 >>> freeze(pl.gamma) Create a blackbody model called bb, check that it is recognized as a component, and display its parameters: >>> create_model_component("bbody", "bb") >>> list_model_components() >>> print(bb) >>> print(bb.ampl) """ # If user mistakenly passes an actual model reference, # just return (i.e., create_model_component(const1d.c1) # is redundant, so just return) if isinstance(typename, Model) and name is None: return typename _check_str_type(typename, "typename") _check_str_type(name, "name") typename = typename.lower() cls = self._model_types.get(typename) if cls is None: raise ArgumentErr('badtype', typename) model = cls(name) self._model_components[name] = model return model
[docs] def reset(self, model=None, id: Optional[IdType] = None ) -> None: """Reset the model parameters to their default settings. The `reset` function restores the parameter values to the default value set by `guess` or to the user-defined default. If the user set initial model values or soft limits - e.g. either with `set_par` or by using parameter prompting via `paramprompt` - then `reset` will restore these values and limits even after `guess` or `fit` has been called. Parameters ---------- model : optional The model component or expression to reset. The default is to use all source expressions. id : int, str, or None, optional The data set to use. The default is to use all data sets with a source expression. See Also -------- fit : Fit one or more data sets. guess : Set model parameters to values matching the data. paramprompt : Control how parameter values are set. set_par : Set the value, limits, or behavior of a model parameter. Examples -------- The following examples assume that the source model has been set using: >>> set_source(powlaw1d.pl * xsphabs.gal) Fit the model and then reset the values of both components (``pl`` and ``gal``): >>> fit() >>> reset() Reset just the parameters of the ``pl`` model component: >>> reset(pl) Reset all the components of the source expression for data set 2. >>> reset(get_source(2)) """ if model is not None: model.reset() return if id is None: ids = list(self._sources.keys()) else: ids = [id] for id in ids: self.get_source(id).reset()
[docs] def delete_model_component(self, name: str) -> None: """Delete a model component. Parameters ---------- name : str The name used to refer to this instance, or component, of the model. The corresponding Python variable will be deleted by this function. See Also -------- create_model_component : Create a model component. delete_model : Delete the model expression for a data set. list_models : List the available model types. list_model_components : List the names of all the model components. set_model : Set the source model expression for a data set. set_model_autoassign_func : Set the method used to create model component identifiers. Notes ----- It is an error to try to delete a component that is part of a model expression - i.e. included as part of an expression in a `set_model` or `set_source` call. In such a situation, use the `delete_model` function to remove the source expression before calling `delete_model_component`. Examples -------- If a model instance called ``pl`` has been created - e.g. by ``create_model_component('powlaw1d', 'pl')`` - then the following will remove it: >>> delete_model_component('pl') """ _check_str_type(name, "name") mod = self._model_components.pop(name, None) if mod is None: raise IdentifierErr('nomodelcmpt', name) # If the component is part of a model expression we # warn the user but make no change. # for key in self.list_model_ids(): # We can not guarantee that key exists in both # _models and _sources - in fact, it shouldn't, # so we need to be a bit careful. # has_model = key in self._models and mod in self._models[key] has_source = key in self._sources and mod in self._sources[key] if has_model or has_source: warning(f"the model component '{mod.name}' is found in model {key}" + " and cannot be deleted") # restore the model component in use and return self._model_components[name] = mod return _remove_obj_from_main(name)
# Back-compatibility # create_model = create_model_component # # Source models # def _eval_model_expression(self, expr, typestr='model'): try: return eval(expr, self._model_globals, self._model_components) except Exception as exc: raise ArgumentErr('badexpr', typestr, sys.exc_info()[1]) from exc
[docs] def list_model_ids(self) -> list[IdType]: """List of all the data sets with a source expression. Returns ------- ids : list of int or str The identifiers for all the data sets which have a source expression set by `set_model` or `set_source`. See Also -------- list_data_ids : List the identifiers for the loaded data sets. list_model_components : List the names of all the model components. list_psf_ids : List of all the data sets with a PSF. set_model : Set the source model expression for a data set. """ keys = list(self._models.keys()) keys.extend(list(self._sources.keys())) keys = list(set(keys)) return sorted(keys, key=str)
# Return full model for fitting, plotting, etc. Expects a corresponding # data set to be available. def _get_model_status(self, id: Optional[IdType] = None): id = self._fix_id(id) src = self._sources.get(id) mdl = self._models.get(id) if src is None and mdl is None: raise IdentifierErr('getitem', 'model', id, 'has not been set') model = mdl is_source = False if mdl is None and src is not None: is_source = True model = src return (model, is_source) def _add_convolution_models(self, id: Optional[IdType], data, model, is_source): """Add in "hidden" components to the model expression. This handles PSF and table models (ensuring that the model is folded on the dataset and adding the response if necessary). """ def fold(mdls): for mdl in mdls: if mdl in model: mdl.fold(data) fold(self._tbl_models) if is_source: model = self._add_psf(id, data, model) else: fold(self._psf_models) return model
[docs] def get_source(self, id: Optional[IdType] = None ) -> Model: """Return the source model expression for a data set. This returns the model expression created by `set_model` or `set_source`. It does not include any instrument response. Parameters ---------- id : int, str, or None, optional The data set containing the source expression. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- model : a sherpa.models.Model object This can contain multiple model components. Changing attributes of this model changes the model used by the data set. See Also -------- delete_model : Delete the model expression from a data set. get_model : Return the model expression for a data set. get_model_pars : Return the names of the parameters of a model. get_model_type : Describe a model expression. list_model_ids : List of all the data sets with a source expression. sherpa.astro.ui.set_bkg_model : Set the background model expression for a data set. set_model : Set the source model expression for a data set. set_full_model : Define the convolved model expression for a data set. show_model : Display the source model expression for a data set. Examples -------- Return the source expression for the default data set, display it, and then find the number of parameters in it: >>> src = get_source() >>> print(src) >>> len(src.pars) 5 Set the source expression for data set 'obs2' to be equal to the model of data set 'obs1' multiplied by a scalar value: >>> set_source('obs2', const1d.norm * get_source('obs1')) """ idval = self._fix_id(id) mdl = self._models.get(idval, None) if mdl is not None: raise IdentifierErr("Convolved model\n" f"'{mdl.name}'\n is set for " f"dataset {idval}. You should use " "get_model instead.") return self._get_item(idval, self._sources, 'source', 'has not been set, consider using ' 'set_source() or set_model()')
[docs] def get_model(self, id: Optional[IdType] = None ) -> Model: """Return the model expression for a data set. This returns the model expression for a data set, including any instrument response (e.g. PSF or ARF and RMF) whether created automatically or explicitly, with `set_full_model`. Parameters ---------- id : int, str, or None, optional The data set containing the source expression. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- instance This can contain multiple model components and any instrument response. Changing attributes of this model changes the model used by the data set. See Also -------- delete_model : Delete the model expression from a data set. get_model_pars : Return the names of the parameters of a model. get_model_type : Describe a model expression. get_source : Return the source model expression for a data set. list_model_ids : List of all the data sets with a source expression. sherpa.astro.ui.set_bkg_model : Set the background model expression for a data set. set_model : Set the source model expression for a data set. set_full_model : Define the convolved model expression for a data set. show_model : Display the source model expression for a data set. Examples -------- Return the model fitted to the default data set: >>> mdl = get_model() >>> len(mdl.pars) 5 """ data = self.get_data(id) model, is_source = self._get_model_status(id) return self._add_convolution_models(id, data, model, is_source)
def _runparamprompt(self, pars): if not self._paramprompt: return for par in pars: while True: inval = input(f"{par.fullname} parameter value [{par.val}] ") if inval == "": break val = None minval = None maxval = None tokens = [t.strip() for t in inval.split(',')] ntokens = len(tokens) if ntokens > 3: info("Error: Please provide a comma-separated " "list of floats; e.g. val,min,max") continue if tokens[0] != '': try: val = float(tokens[0]) except Exception as e: info("Please provide a float value; %s", e) continue if ntokens > 1 and tokens[1] != '': try: minval = float(tokens[1]) except Exception as e: info("Please provide a float value; %s", e) continue if ntokens > 2 and tokens[2] != '': try: maxval = float(tokens[2]) except Exception as e: info("Please provide a float value; %s", e) continue try: self.set_par(par, val, minval, maxval) break except Exception as e: info(str(e)) continue # DOC-NOTE: also in sherpa.astro.utils # DOC-TODO: what examples/info should be talked about here? # (e.g. no PHA/ARF/RMF) # @loggable(with_id=True, with_keyword='model')
[docs] def set_full_model(self, id, model=None): """Define the convolved model expression for a data set. The model expression created by `set_model` can be modified by "instrumental effects", such as a PSF set by `set_psf`. The `set_full_model` function is for when this is not sufficient, and full control is needed. An example of when this would be if different PSF models should be applied to different source components. Parameters ---------- id : int or str, optional The data set containing the source expression. If not given then the default identifier is used, as returned by `get_default_id`. model : str or sherpa.models.Model object This defines the model used to fit the data. It can be a Python expression or a string version of it. See Also -------- fit : Fit one or more data sets. set_psf : Add a PSF model to a data set. set_model : Set the source model expression for a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `model` parameter. If given two un-named arguments, then they are interpreted as the `id` and `model` parameters, respectively. Some functions - such as `plot_source` - may not work for model expressions created by `set_full_model`. Examples -------- Apply different PSFs to different components, as well as an unconvolved component: >>> load_psf("psf1", "psf1.dat") >>> load_psf("psf2", "psf2.dat") >>> smodel = psf1(gauss2d.src1) + psf2(beta2d.src2) + const2d.bgnd >>> set_full_model("src", smodel) """ if model is None: id, model = model, id model = self._check_model(model) idval = self._fix_id(id) self._models[idval] = model self._runparamprompt(model.pars)
# DOC-TODO: the .cache value appears to default to 5 # @loggable(with_id=True, with_keyword="model")
[docs] def set_model(self, id, model=None): """Set the source model expression for a data set. The function is available as both `set_model` and `set_source`. The model fit to the data can be further modified by instrument responses which can be set explicitly - e.g. by `set_psf` - or be defined automatically by the type of data being used (e.g. the ARF and RMF of a PHA data set). The `set_full_model` command can be used to explicitly include the instrument response if necessary. Parameters ---------- id : int or str, optional The data set containing the source expression. If not given then the default identifier is used, as returned by `get_default_id`. model : str or sherpa.models.Model object This defines the model used to fit the data. It can be a Python expression or a string version of it. See Also -------- delete_model : Delete the model expression from a data set. fit : Fit one or more data sets. freeze : Fix model parameters so they are not changed by a fit. get_source : Return the source model expression for a data set. integrate1d : Integrate 1D source expressions. sherpa.astro.ui.set_bkg_model : Set the background model expression for a data set. set_full_model : Define the convolved model expression for a data set. show_model : Display the source model expression for a data set. set_par : Set the value, limits, or behavior of a model parameter. thaw : Allow model parameters to be varied during a fit. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `model` parameter. If given two un-named arguments, then they are interpreted as the `id` and `model` parameters, respectively. PHA data sets will automatically apply the instrumental response (ARF and RMF) to the source expression. For some cases this is not useful - for example, when different responses should be applied to different model components - in which case `set_full_model` should be used instead. Model caching is available via the model ``cache`` attribute. A non-zero value for this attribute means that the results of evaluating the model will be cached if all the parameters are frozen, which may lead to a reduction in the time taken to evaluate a fit. A zero value turns off the caching. The default setting for X-Spec and 1D analytic models is that ``cache`` is ``5``, but ``0`` for the 2D analytic models. The `integrate1d` model can be used to apply a numerical integration to an arbitrary model expression. Examples -------- Create an instance of the `powlaw1d` model type, called ``pl``, and use it as the model for the default data set. >>> set_model(polynom1d.pl) Create a model for the default dataset which is the `xsphabs` model multiplied by the sum of an `xsapec` and `powlaw1d` models (the model components are identified by the labels ``gal``, ``clus``, and ``pl``). >>> set_model(xsphabs.gal * (xsapec.clus + powlaw1d.pl)) Repeat the previous example, using a string to define the model expression: >>> set_model('xsphabs.gal * (xsapec.clus + powlaw1d.pl)') Use the same model component (``src``, a `gauss2d` model) for the two data sets ('src1' and 'src2'). >>> set_model('src1', gauss2d.src + const2d.bgnd1) >>> set_model('src2', src + const2d.bgnd2) Share an expression - in this case three gaussian lines - between three data sets. The normalization of this line complex is allowed to vary in data sets 2 and 3 (the ``norm2`` and ``norm3`` components of the `const1d` model), and each data set has a separate `polynom1d` component (``bgnd1``, ``bgnd2``, and ``bgnd3``). The ``c1`` parameters of the `polynom1d` model components are thawed and then linked together (to reduce the number of free parameters): >>> lines = gauss1d.l1 + gauss1d.l2 + gauss1d.l3 >>> set_model(1, lines + polynom1d.bgnd1) >>> set_model(2, lines * const1d.norm2 + polynom1d.bgnd2) >>> set_model(3, lines * const1d.norm3 + polynom1d.bgnd3) >>> thaw(bgnd1.c1, bgnd2.c1, bgnd3.c1) >>> link(bgnd2.c2, bgnd1.c1) >>> link(bgnd3.c3, bgnd1.c1) For this expression, the ``gal`` component is frozen, so it is not varied in the fit. The ``cache`` attribute is set to a non-zero value to ensure that it is cached during a fit (this is actually the default value for this model so it not normally needed). >>> set_model(xsphabs.gal * (xsapec.clus + powlaw1d.pl)) >>> gal.nh = 0.0971 >>> freeze(gal) >>> gal.cache = 1 """ if model is None: id, model = model, id model = self._check_model(model) idval = self._fix_id(id) # Fit(data, model) does the dimensionality validation. Note # that we assume that any convolution-style model (e.g. a PSF # or a PHA response) does not change the dimensionality check. # data = self._data.get(idval) if data is not None: Fit(data, model) self._sources[idval] = model self._runparamprompt(model.pars) # Delete any previous model set with set_full_model() mdl = self._models.pop(idval, None) if mdl is not None: warning("Clearing convolved model\n'%s'\nfor dataset %s", mdl.name, idval)
set_source = set_model
[docs] def delete_model(self, id: Optional[IdType] = None ) -> None: """Delete the model expression for a data set. This removes the model expression, created by `set_model`, for a data set. It does not delete the components of the expression. Parameters ---------- id : int, str, or None, optional The data set containing the source expression. If not given then the default identifier is used, as returned by `get_default_id`. See Also -------- clean : Clear all stored session data. delete_data : Delete a data set by identifier. get_default_id : Return the default data set identifier. set_model : Set the source model expression for a data set. show_model : Display the source model expression for a data set. Examples -------- Remove the model expression for the default data set: >>> delete_model() Remove the model expression for the data set with the identifier called 'src': >>> delete_model('src') """ idval = self._fix_id(id) self._models.pop(idval, None) self._sources.pop(idval, None)
def _check_model(self, model: ModelType) -> Model: """Return a Model instance. Converts a string to the model instance if necessary. Parameters ---------- model : `str` or a `sherpa.models.model.Model` object Returns ------- model : `sherpa.models.model.Model` instance Raises ------ ArgumentTypeError The argument is not a string or a model ArgumentErr The argument is a string but does not reference a model """ if _is_str(model): mdl = self._eval_model_expression(model) else: mdl = model _check_type(mdl, Model, 'model', 'a model object or model expression string') return mdl
[docs] def get_model_type(self, model): """Describe a model expression. Parameters ---------- model : str or a sherpa.models.model.Model object Returns ------- type : str The name of the model expression. See Also -------- create_model_component : Create a model component. get_model : Return the model expression for a data set. get_model_pars : Return the names of the parameters of a model. get_source : Return the source model expression for a data set. Examples -------- >>> create_model_component("powlaw1d", "pl") >>> get_model_type("pl") 'powlaw1d' For expressions containing more than one component, the result is likely to be 'binaryopmodel' >>> get_model_type(const1d.norm * (polynom1d.poly + gauss1d.gline)) 'binaryopmodel' For sources with some form of an instrument model - such as a PSF convolution for an image or a PHA file with response information from the ARF and RMF - the response can depend on whether the expression contains this extra information or not: >>> get_model_type(get_source('spec')) 'binaryopmodel' >>> get_model_type(get_model('spec')) 'rspmodelpha' """ model = self._check_model(model) return type(model).__name__.lower()
[docs] def get_model_pars(self, model: ModelType) -> list[str]: """Return the names of the parameters of a model. .. versionadded:: 4.16.1 Linked components are now included without having to include them in the model expression. Parameters ---------- model : str or a sherpa.models.model.Model object Returns ------- names : list of str The names of the parameters in the model expression. These names do not include the name of the parent component. See Also -------- create_model_component : Create a model component. get_model : Return the model expression for a data set. get_model_type : Describe a model expression. get_source : Return the source model expression for a data set. Examples -------- >>> mdl = gauss2d.src + const2d.bgnd >>> get_model_pars(mdl) ['fwhm', 'xpos', 'ypos', 'ellip', 'theta', 'ampl', 'c0'] The return value is unchanged if the two models are linked together, such as setting the background amplitude to 1% of the source amplitude: >>> bgnd.c0 = 0.01 * src.ampl >>> get_model_pars(mdl) ['fwhm', 'xpos', 'ypos', 'ellip', 'theta', 'ampl', 'c0'] If a model expression contains linked parameters that are not part of the model expression then they will also be included (in this case both the const2d and scale1d parameters are named 'c0', hence the duplication): >>> scale1d.sep <Scale1D model instance 'scale1d.sep'> >>> src.ypos = src.xpos + sep.c0 >>> get_model_pars(mdl) ['fwhm', 'xpos', 'ypos', 'ellip', 'theta', 'ampl', 'c0', 'c0'] """ mdl = self._check_model(model) # TODO: we could add the component name names = [p.name for p in mdl.pars] names.extend(p.name for p in mdl.lpars) return names
[docs] def get_num_par(self, id: Optional[IdType] = None) -> int: """Return the number of parameters in a model expression. The `get_num_par` function returns the number of parameters, both frozen and thawed, in the model assigned to a data set. .. versionadded:: 4.16.1 Linked components are now included without having to include them in the model expression. Parameters ---------- id : int, str, or None, optional The data set containing the model expression. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- npar : int The number of parameters in the model expression. This sums up all the parameters of the components in the expression, and includes both frozen and thawed components. Raises ------ sherpa.utils.err.IdentifierErr If no model expression has been set for the data set (with `set_model` or `set_source`). See Also -------- get_num_par_frozen : Return the number of frozen parameters. get_num_par_thawed : Return the number of thawed parameters. set_model : Set the source model expression for a data set. Examples -------- Return the total number of parameters for the default data set: >>> print(get_num_par()) Find the number of parameters for the model associated with the data set called "jet": >>> njet = get_num_par('jet') """ mdl = self.get_source(id) return len(mdl.pars) + len(mdl.lpars)
[docs] def get_num_par_thawed(self, id: Optional[IdType] = None) -> int: """Return the number of thawed parameters in a model expression. The `get_num_par_thawed` function returns the number of thawed parameters in the model assigned to a data set. .. versionadded:: 4.16.1 Linked components are now included without having to include them in the model expression. Parameters ---------- id : int, str, or None, optional The data set containing the model expression. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- npar : int The number of parameters in the model expression. This sums up all the thawed parameters of the components in the expression. Raises ------ sherpa.utils.err.IdentifierErr If no model expression has been set for the data set (with `set_model` or `set_source`). See Also -------- get_num_par : Return the number of parameters. get_num_par_frozen : Return the number of frozen parameters. set_model : Set the source model expression for a data set. Examples -------- Return the number of thawed parameters for the default data set: >>> print(get_num_par_thawed()) Find the number of thawed parameters for the model associated with the data set called "jet": >>> njet = get_num_par_thawed('jet') """ mdl = self.get_source(id) return len(mdl.thawedpars)
[docs] def get_num_par_frozen(self, id: Optional[IdType] = None) -> int: """Return the number of frozen parameters in a model expression. The `get_num_par_frozen` function returns the number of frozen parameters in the model assigned to a data set. .. versionadded:: 4.16.1 Linked components are now included without having to include them in the model expression. Parameters ---------- id : int, str, or None, optional The data set containing the model expression. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- npar : int The number of parameters in the model expression. This sums up all the frozen parameters of the components in the expression. Raises ------ sherpa.utils.err.IdentifierErr If no model expression has been set for the data set (with `set_model` or `set_source`). See Also -------- get_num_par : Return the number of parameters. get_num_par_thawed : Return the number of thawed parameters. set_model : Set the source model expression for a data set. Examples -------- Return the number of frozen parameters for the default data set: >>> print(get_num_par_frozen()) Find the number of frozen parameters for the model associated with the data set called "jet": >>> njet = get_num_par_frozen('jet') """ return self.get_num_par(id) - self.get_num_par_thawed(id)
# # "Special" models (user and table models) # def _read_user_model(self, filename, ncols=2, colkeys=None, dstype=sherpa.data.Data1D, sep=' ', comment='#'): x = None y = None try: data = self.unpack_data(filename, ncols, colkeys, dstype, sep, comment) x = data.get_x() y = data.get_y() except TypeError: # we have to check for the case of a *single* column in the file # extract the single array from the read and bypass the dataset y = sherpa.io.get_ascii_data(filename, ncols=1, colkeys=colkeys, sep=sep, dstype=dstype, comment=comment)[1].pop() return (x, y) # DOC-TODO: I am not sure I have the data format correct. # DOC-TODO: description of template interpolation needs a lot of work.
[docs] def load_template_model(self, modelname, templatefile, dstype=sherpa.data.Data1D, sep=' ', comment='#', method=sherpa.utils.linear_interp, template_interpolator_name='default'): """Load a set of templates and use it as a model component. A template model can be considered to be an extension of the table model supported by `load_table_model`. In the template case, a set of models (the "templates") are read in and then compared to the data, with the best-fit being used to return a set of parameters. Parameters ---------- modelname : str The identifier for this table model. templatefile : str The name of the file to read in. This file lists the template data files. dstype : data class to use, optional What type of data is to be used. This is currently unused. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. method : func The interpolation method to use to map the input data onto the coordinate grid of the data set. Linear, nearest-neighbor, and polynomial schemes are provided in the sherpa.utils module. template_interpolator_name : str The method used to interpolate within the set of templates. The default is ``default``. A value of ``None`` turns off the interpolation; in this case the grid-search optimiser must be used to fit the data. See Also -------- load_conv : Load a 1D convolution model. load_psf : Create a PSF model load_table_model : Load tabular data and use it as a model component. load_template_interpolator : Set the template interpolation scheme. set_model : Set the source model expression for a data set. set_full_model : Define the convolved model expression for a data set. Notes ----- Examples of interpolation schemes provided by `sherpa.utils` are: `linear_interp`, `nearest_interp`, and `neville`. The template index file is the argument to `load_template_model`, and is used to list the data files. It is an ASCII file with one line per template, and each line containing the model parameters (numeric values), followed by the MODELFLAG column and then the file name for the data file (its name must begin with FILE). The MODELFLAG column is used to indicate whether a file should be used or not; a value of 1 means that the file should be used, and a value of 0 that the line should be ignored. The parameter names are set by the column names. The data file - the last column of the template index file - is read in and the first two columns used to set up the x and y values (`Data1D`) or xlo, xhi, and y values (`Data1DInt`). These files must be in ASCII format. The ``method`` parameter determines how the template data values are interpolated onto the source data grid. The ``template_interpolator_name`` parameter determines how the dependent axis (Y) values are interpolated when the parameter values are varied. This interpolation can be turned off by using a value of ``None``, in which case the grid-search optimiser *must* be used. See `load_template_interpolator` for how to create a valid interpolator. The "default" interpolator uses `sherpa.models.KNNInterpolator` with k=2 and order=2. Examples -------- Load in the templates from the file "index.tmpl" as the model component "kerr", and set it as the source model for the default data set. The optimisation method is switched to use a grid search for the parameters of this model. >>> load_template_model("kerr", "index.tmpl") >>> set_source(kerr) >>> set_method('gridsearch') >>> set_method_opt('sequence', kerr.parvals) >>> fit() Fit a constant plus the templates, using the neville scheme for integrating the template onto the data grid. The Monte-Carlo based optimiser is used. >>> load_template_model('tbl', 'table.lis', ... sherpa.utils.neville) >>> set_source(tbl + const1d.bgnd) >>> set_method('moncar') """ # Note: dstype is not used templatemodel = read_template_model(modelname, templatefile, sep=sep, comment=comment, method=method, template_interpolator_name=template_interpolator_name) self._tbl_models.append(templatemodel) self._add_model_component(templatemodel)
# DOC-TODO: description of template interpolation needs a lot of work. # @loggable()
[docs] def load_template_interpolator(self, name, interpolator_class, **kwargs): """Set the template interpolation scheme. Parameters ---------- name : str interpolator_class An interpolator class. **kwargs The arguments for the interpolator. See Also -------- load_template_model : Load a set of templates and use it as a model component. Examples -------- Create an interpolator name that can be used as the ``template_interpolator_name`` argument to `load_template_model`. >>> from sherpa.models import KNNInterpolator >>> load_template_interpolator('myint', KNNInterpolator, k=4, order=3) """ add_interpolator(name, interpolator_class, **kwargs)
[docs] def load_table_model(self, modelname, filename, ncols=2, colkeys=None, dstype=sherpa.data.Data1D, sep=' ', comment='#', method=sherpa.utils.linear_interp): """Load ASCII tabular data and use it as a model component. A table model is defined on a grid of points which is interpolated onto the independent axis of the data set. The model has a single parameter, ``ampl``, which is used to scale the data, and it can be fixed or allowed to vary during a fit. Parameters ---------- modelname : str The identifier for this table model. filename : str The name of the ASCII file to read in. ncols : int, optional The number of columns to read in (the first ``ncols`` columns in the file). It should be 1 or 2. colkeys : array of str, optional An array of the column name to read in. The default is ``None``, which uses the first ``ncols`` columns in the file. The default column names are col followed by the column number, so ``col1`` for the first column. dstype : data class to use, optional What type of data is to be used. Supported values include `Data1D` (the default) and `Data1DInt`. sep : str, optional The separator character for columns. The default is ``' '``. comment : str, optional Lines starting with this string are ignored. The default is ``'#'``. method : func The interpolation method to use to map the input data onto the coordinate grid of the data set. Linear, nearest-neighbor, and polynomial schemes are provided in the sherpa.utils module. See Also -------- load_conv : Load a 1D convolution model. load_psf : Create a PSF model load_template_model : Load a set of templates and use it as a model component. set_model : Set the source model expression for a data set. set_full_model : Define the convolved model expression for a data set. Notes ----- Examples of interpolation schemes provided by `sherpa.utils` are: `linear_interp`, `nearest_interp`, `neville`, and `neville2d`. See `unpack_data` for a description of the supported file format. When reading in two columns, the data will be re-ordered so that the first column read in (the independent axis) is numerically increasing. If ``ncols=1``, only the model values (dependent axis) are read in. In this case, the data set to which the model is applied - via ``set_source`` - must have the same number of data points as the model. When used with an integrated data set (for example, `Data1DInt`), then the first column of the table - the independent axis - should be the left-edge of the bin, and the second column is the integrated value for that bin. Examples -------- Load in the data from filt.dat and use it to multiply the source model (a power law and a gaussian). Allow the amplitude for the table model to vary between 1 and 1e6, starting at 1e3. >>> load_table_model('filt', 'filt.dat') >>> set_source(filt * (powlaw1d.pl + gauss1d.gline)) >>> set_par(filt.ampl, 1e3, min=1, max=1e6) """ x, y = self._read_user_model(filename, ncols, colkeys, dstype, sep, comment) tablemodel = TableModel(modelname) tablemodel.method = method tablemodel.filename = filename tablemodel.load(x, y) self._tbl_models.append(tablemodel) self._add_model_component(tablemodel)
# also in sherpa.astro.utils # DOC-TODO: how is the _y value used if set # @loggable()
[docs] def load_user_model(self, func, modelname, filename=None, ncols=2, colkeys=None, dstype=sherpa.data.Data1D, sep=' ', comment='#'): """Create a user-defined model. Assign a name to a function; this name can then be used as any other name of a model component, either in a source expression - such as with `set_model` - or to change a parameter value. The `add_user_pars` function should be called after `load_user_model` to set up the parameter names and defaults. Parameters ---------- func : func The function that evaluates the model. modelname : str The name to use to refer to the model component. filename : str, optional Set this to include data from this file in the model. The file should contain two columns, and the second column is stored in the ``_y`` attribute of the model. ncols : int, optional The number of columns to read in (the first ``ncols`` columns in the file). colkeys : array of str, optional An array of the column name to read in. The default is ``None``. dstype : data class to use, optional What type of data is to be used. Supported values include `Data1D` (the default), `Data1DInt`, `Data2D`, and `Data2DInt`. sep : str, optional The separator character. The default is ``' '``. comment : str, optional The comment character. The default is ``'#'``. See Also -------- add_model : Create a user-defined model class. add_user_pars : Add parameter information to a user model. load_table_model : Load tabular data and use it as a model component. load_template_model : Load a set of templates and use it as a model component. set_model : Set the source model expression for a data set. Notes ----- The `load_user_model` function is designed to make it easy to add a model, but the interface is not the same as the existing models (such as having to call both `load_user_model` and `add_user_pars` for each new instance). The `add_model` function is used to add a model as a Python class, which is more work to set up, but then acts the same way as the existing models. The function used for the model depends on the dimensions of the data. For a 1D model, the signature is:: def func1d(pars, x, xhi=None): where, if xhi is not None, then the dataset is binned and the x argument is the low edge of each bin. The pars argument is the parameter array - the names, defaults, and limits can be set with `add_user_pars` - and should not be changed. The return value is an array the same size as x. For 2D models, the signature is:: def func2d(pars, x0, x1, x0hi=None, x1hi=None): There is no way using this interface to indicate that the model is for 1D or 2D data. The format for the input file, and how to control what columns to read, are described in the help for the `unpack_data` function. Examples -------- Create a two-parameter model of the form "y = mx + c", where the intercept is the first parameter and the slope the second, set the parameter names and default values, then use it in a source expression:: >>> def func1d(pars, x, xhi=None): ... if xhi is not None: ... x = (x + xhi) / 2 ... return x * pars[1] + pars[0] ... >>> load_user_model(func1d, "myfunc") >>> add_user_pars(myfunc, ["c", "m"], [0, 1]) >>> set_source(myfunc + gauss1d.gline) """ usermodel = sherpa.models.UserModel(modelname) usermodel.calc = func usermodel._file = filename if filename is not None: _, usermodel._y = self._read_user_model(filename, ncols, colkeys, dstype, sep, comment) self._add_model_component(usermodel)
# @loggable()
[docs] def add_user_pars(self, modelname, parnames, parvals=None, parmins=None, parmaxs=None, parunits=None, parfrozen=None ) -> None: """Add parameter information to a user model. Parameters ---------- modelname : str The name of the user model (created by `load_user_model`). parnames : array of str The names of the parameters. The order of all the parameter arrays must match that expected by the model function (the first argument to `load_user_model`). parvals : array of number, optional The default values of the parameters. If not given each parameter is set to 0. parmins : array of number, optional The minimum values of the parameters (hard limit). The default value is -3.40282e+38. parmaxs : array of number, optional The maximum values of the parameters (hard limit). The default value is 3.40282e+38. parunits : array of str, optional The units of the parameters. This is only used in screen output (i.e. is informational in nature). parfrozen : array of bool, optional Should each parameter be frozen. The default is that all parameters are thawed. See Also -------- add_model : Create a user-defined model class. load_user_model : Create a user-defined model. set_par : Set the value, limits, or behavior of a model parameter. Notes ----- The parameters must be specified in the order that the function expects. That is, if the function has two parameters, pars[0]='slope' and pars[1]='y_intercept', then the call to add_user_pars must use the order ["slope", "y_intercept"]. Examples -------- Create a user model for the function `profile` called "myprof", which has two parameters called "core" and "ampl", both of which will start with a value of 0. >>> load_user_model(profile, "myprof") >>> add_user_pars("myprof", ["core", "ampl"]) Set the starting values, minimum values, and whether or not the parameter is frozen by default, for the "prof" model: >>> pnames = ["core", "ampl", "intflag"] >>> pvals = [10, 200, 1] >>> pmins = [0.01, 0, 0] >>> pfreeze = [False, False, True] >>> add_user_pars("prof", pnames, pvals, ... parmins=pmins, parfrozen=pfreeze) """ _check_str_type(modelname, "model name") usermodel = self._get_model_component(modelname) if (usermodel is None or not isinstance(usermodel, sherpa.models.UserModel)): raise ArgumentTypeErr('badarg', modelname, "a user model") pars = [] vals = None if parvals is not None: vals = list(parvals) mins = None if parmins is not None: mins = list(parmins) maxs = None if parmaxs is not None: maxs = list(parmaxs) units = None if parunits is not None: units = list(parunits) frozen = None if parfrozen is not None: frozen = list(parfrozen) for name in parnames: par = sherpa.models.Parameter(modelname, name, 0.0) if parvals is not None: par.val = vals.pop(0) if parmins is not None: par.min = mins.pop(0) if parmaxs is not None: par.max = maxs.pop(0) if parunits is not None: par.units = units.pop(0) if parfrozen is not None: par.frozen = frozen.pop(0) pars.append(par) # Create a new user model with the desired parameters, # and copy over calc, file and y from the old usermodel # (these are the only attributes we care about preserving) newusermodel = sherpa.models.UserModel(modelname, pars) newusermodel.calc = usermodel.calc newusermodel._file = usermodel._file newusermodel._y = usermodel._y # Remove old usermodel from collection of known model # instances, and add new user model to that collection self._model_components.pop(modelname, None) self._add_model_component(newusermodel)
# DOC-TODO: Improve priors documentation
[docs] def load_user_stat(self, statname, calc_stat_func, calc_err_func=None, priors={} ) -> None: """Create a user-defined statistic. The choice of statistics - that is, the numeric value that is minimised during the fit - can be extended by providing a function to calculate a numeric value given the data. The statistic is given a name and then can be used just like any of the pre-defined statistics. Parameters ---------- statname : str The name to use for the new statistic when calling `set_stat`. calc_stat_func : func The function that calculates the statistic. calc_err_func : func, optional How to calculate the statistical error on a data point. priors : dict A dictionary of hyper-parameters for the priors. See Also -------- calc_stat : Calculate the fit statistic for a data set. set_stat : Set the statistical method. Notes ----- The ``calc_stat_func`` should have the following signature:: def func(data, model, staterror=None, syserrr=None, weight=None) where data is the array of dependent values, model the array of the predicted values, staterror and syserror are arrays of statistical and systematic errors respectively (if valid), and weight an array of weights. The return value is the pair (stat_value, stat_per_bin), where stat_value is a scalar and stat_per_bin is an array the same length as data. The ``calc_err_func`` should have the following signature:: def func(data) and returns an array the same length as data. Examples -------- Define a chi-square statistic with the label "qstat": >>> def qstat(d, m, staterr=None, syserr=None, w=None): ... if staterr is None: ... staterr = 1 ... c = ((d-m) / staterr) ... return ((c*c).sum(), c) ... >>> load_user_stat("qstat", qstat) >>> set_stat("qstat") """ userstat = UserStat(calc_stat_func, calc_err_func, statname) if priors: assert False # TODO: clean this up pars = [(key, priors.pop(key)) for key in priors.keys() if isinstance(priors[key], sherpa.models.Parameter)] kwargs = dict(pars) userstat = sherpa.logposterior.Prior(calc_stat_func, priors, kwargs) _assign_obj_to_main(statname, userstat)
# Back-compatibility # set_source = set_model # # Conv # # DOC-NOTE: why isn't the "flux" of the convolved model ~ # that of the unconvolved model? # DOC-NOTE: better description of conv vs psf # @loggable()
[docs] def load_conv(self, modelname, filename_or_model, *args, **kwargs): """Load a 1D convolution model. The convolution model can be defined either by a data set, read from a file, or an analytic model, using a Sherpa model instance. A source model can be convolved with this model by including ``modelname`` in the `set_model` call, using the form:: modelname(modelexpr) Parameters ---------- modelname : str The identifier for this PSF model. filename_or_model : str or model instance This can be the name of an ASCII file or a Sherpa model component. args Arguments for `unpack_data` if `filename_or_model` is a file. kwargs Keyword arguments for `unpack_data` if `filename_or_model` is a file. See Also -------- delete_psf : Delete the PSF model for a data set. load_psf : Create a PSF model. load_table_model : Load tabular data and use it as a model component. set_full_model : Define the convolved model expression for a data set. set_model : Set the source model expression for a data set. set_psf : Add a PSF model to a data set. Examples -------- Create a 1D data set, assign a box model - which is flat between the xlow and xhi values and zero elsewhere - and then display the model values. Then add in a convolution component by a gaussian and overplot the resulting source model with two different widths. >>> dataspace1d(-10, 10, 0.5, id='tst', dstype=Data1D) >>> set_source('tst', box1d.bmdl) >>> bmdl.xlow = -2 >>> bmdl.xhi = 3 >>> plot_source('tst') >>> load_conv('conv', normgauss1d.gconv) >>> gconv.fwhm = 2 >>> set_source('tst', conv(bmdl)) >>> plot_source('tst', overplot=True) >>> gconv.fwhm = 5 >>> plot_source('tst', overplot=True) Create a convolution component called "cmodel" which uses the data in the file "conv.dat", which should have two columns (the X and Y values). >>> load_conv('cmodel', 'conv.dat') """ kernel = filename_or_model if _is_str(filename_or_model): try: kernel = self._eval_model_expression(filename_or_model) except Exception: kernel = self.unpack_data(filename_or_model, *args, **kwargs) conv = sherpa.instrument.ConvolutionKernel(kernel, modelname) self._add_model_component(conv)
# # PSF1 #
[docs] def load_psf(self, modelname, filename_or_model, *args, **kwargs): """Create a PSF model. Create a PSF model representing either an array of data, read from a file, or a model component (such as a gaussian). The `set_psf` function is used to associate this model with a data set. Parameters ---------- modelname : str The identifier for this PSF model. filename_or_model : str or model instance This can be the name of an ASCII file or a Sherpa model component. args Arguments for `unpack_data` if `filename_or_model` is a file. kwargs Keyword arguments for `unpack_data` if `filename_or_model` is a file. See Also -------- delete_psf : Delete the PSF model for a data set. load_conv : Load a 1D convolution model. load_table_model : Load tabular data and use it as a model component. set_full_model : Define the convolved model expression for a data set. set_model : Set the source model expression for a data set. set_psf : Add a PSF model to a data set. Examples -------- Create a PSF model using a 2D gaussian: >>> load_psf('psf1', gauss2d.gpsf) >>> set_psf('psf1') >>> gpsf.fwhm = 4.2 >>> gpsf.ellip = 0.2 >>> gpsf.theta = 30 * np.pi / 180 >>> image_psf() Create a PSF model from the data in the ASCII file 'line_profile.dat' and apply it to the data set called 'bgnd': >>> load_psf('pmodel', 'line_profile.dat') >>> set_psf('bgnd', 'pmodel') """ kernel = filename_or_model if _is_str(filename_or_model): try: kernel = self._eval_model_expression(filename_or_model) except Exception: kernel = self.unpack_data(filename_or_model, *args, **kwargs) psf = sherpa.instrument.PSFModel(modelname, kernel) self._add_model_component(psf) self._psf_models.append(psf)
# DOC-TODO: am I correct about the multiple use warning? # @loggable(with_id=True, with_keyword='psf')
[docs] def set_psf(self, id, psf=None): """Add a PSF model to a data set. After this call, the model that is fit to the data (as set by `set_model`) will be convolved by the given PSF model. The term "psf" is used in functions to refer to the data sent to this function whereas the term "kernel" refers to the data that is used in the actual convolution (this can be re-normalized and a sub-set of the PSF data). Parameters ---------- id : int or str, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. psf : str or `sherpa.instrument.PSFModel` instance The PSF model created by `load_psf`. See Also -------- delete_psf : Delete the PSF model for a data set. get_psf : Return the PSF model defined for a data set. image_psf : Display the 2D PSF model for a data set in the image viewer. load_psf : Create a PSF model. plot_psf : Plot the 1D PSF model applied to a data set. set_full_model : Define the convolved model expression for a data set. set_model : Set the source model expression for a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `psf` parameter. If given two un-named arguments, then they are interpreted as the `id` and `psf` parameters, respectively. A PSF component should only be applied to a single data set. This is not enforced by the system, and incorrect results can occur if this condition is not true. The point spread function (PSF) is defined by the full (unfiltered) PSF image loaded into Sherpa or the PSF model expression evaluated over the full range of the dataset; both types of PSFs are established with the `load_psf` command. The kernel is the subsection of the PSF image or model which is used to convolve the data. This subsection is created from the PSF when the size and center of the kernel are defined by the command `set_psf`. While the kernel and PSF might be congruent, defining a smaller kernel helps speed the convolution process by restricting the number of points within the PSF that must be evaluated. In a 1-D PSF model, a radial profile or 1-D model array is used to convolve (fold) the given source model using the Fast Fourier Transform (FFT) technique. In a 2-D PSF model, an image or 2-D model array is used. The parameters of a PSF model include: kernel The data used for the convolution (file name or model instance). size The number of pixels used in the convolution (this can be a subset of the full PSF). This is a scalar (1D) or a sequence (2D, width then height) value. center The center of the kernel. This is a scalar (1D) or a sequence (2D, width then height) value. The kernel centroid must always be at the center of the extracted sub-image, otherwise, systematic shifts will occur in the best-fit positions. radial Set to ``1`` to use a symmetric array. The default is ``0`` to reduce edge effects. norm Should the kernel be normalized so that it sums to 1? This summation is done over the full data set (not the subset defined by the ``size`` parameter). The default is ``1`` (yes). Examples -------- Use the data in the ASCII file 'line_profile.dat' as the PSF for the default data set: >>> load_psf('psf1', 'line_profile.dat') >>> set_psf(psf1) Use the same PSF for different data sets: >>> load_psf('p1', 'psf.img') >>> load_psf('p2', 'psf.img') >>> set_psf(1, 'p1') >>> set_psf(2, 'p2') Restrict the convolution to a sub-set of the PSF data and compare the two: >>> set_psf(psf1) >>> psf1.size = (41,41) >>> image_psf() >>> image_kernel(newframe=True, tile=True) """ if psf is None: id, psf, = psf, id id = self._fix_id(id) if _is_str(psf): psf = self._eval_model_expression(psf) self._set_item(id, psf, self._psf, sherpa.instrument.PSFModel, 'psf', 'a PSF model object or PSF model expression string') # fold the PSF with data and model if available, if not pass try: data = self.get_data(id) psf = self._psf.get(id, None) if psf is not None: psf.fold(data) except IdentifierErr: pass # If the PSF is Sherpa model and it implements the center # attribute, then populate the model position parameters # using the PSF center if the user has not already done so. # Note: PSFKernel only. if (psf.kernel is not None and callable(psf.kernel) and psf.model is not None and isinstance(psf.model, sherpa.instrument.PSFKernel)): psf_center = psf.center if np.isscalar(psf_center): psf_center = [psf_center] try: center = psf.kernel.get_center() if (np.asarray(center) == 0.0).all(): psf.kernel.set_center(*psf_center, values=True) except NotImplementedError: pass
[docs] def get_psf(self, id: Optional[IdType] = None): """Return the PSF model defined for a data set. Return the parameter settings for the PSF model assigned to the data set. Parameters ---------- id : int, str, or None, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- psf : a `sherpa.instrument.PSFModel` instance Raises ------ sherpa.utils.err.IdentifierErr If no PSF model has been set for the data set. See Also -------- delete_psf : Delete the PSF model for a data set. image_psf : Display the 2D PSF model for a data set in the image viewer. list_psf_ids : List of all the data sets with a PSF. load_psf : Create a PSF model. plot_psf : Plot the 1D PSF model applied to a data set. set_psf : Add a PSF model to a data set. Examples -------- Change the size and center of the PSF for the default data set: >>> psf = get_psf() >>> psf.size = (21, 21) >>> psf.center = (10, 10) """ return self._get_item(id, self._psf, 'psf model', 'has not been set')
[docs] def delete_psf(self, id: Optional[IdType] = None) -> None: """Delete the PSF model for a data set. Remove the PSF convolution applied to a source model. Parameters ---------- id : int, str, or None, optional The data set. If not given then the default identifier is used, as returned by `get_default_id`. See Also -------- list_psf_ids : List of all the data sets with a PSF. load_psf : Create a PSF model. set_psf : Add a PSF model to a data set. get_psf : Return the PSF model defined for a data set. Examples -------- >>> delete_psf() >>> delete_psf('core') """ idval = self._fix_id(id) self._psf.pop(idval, None)
[docs] def list_psf_ids(self) -> list[IdType]: """List of all the data sets with a PSF. .. versionadded:: 4.12.2 Returns ------- ids : list of int or str The identifiers for all the data sets which have a PSF model set by `set_psf`. See Also -------- list_data_ids : List the identifiers for the loaded data sets. list_model_ids : List of all the data sets with a source expression. set_psf : Add a PSF model to a data set. """ keys = list(self._psf.keys()) return sorted(keys, key=str)
def _add_psf(self, id: Optional[IdType], data, model): idval = self._fix_id(id) psf = self._psf.get(idval, None) if psf is not None: model = psf(model) psf.fold(data) return model # # Parameters # def _check_par(self, par, argname='par'): if _is_str(par): par = self._eval_model_expression(par, 'parameter') _check_type(par, sherpa.models.Parameter, argname, 'a parameter object or parameter expression string') return par # DOC-NOTE: I have not documented that par can be an actual parameter # since in that case get_par(x) === x, so seems somewhat pointless!
[docs] def get_par(self, par): """Return a parameter of a model component. Parameters ---------- par : str The name of the parameter, using the format "componentname.parametername". Returns ------- par : a `sherpa.models.parameter.Parameter` instance The parameter values - e.g. current value, limits, and whether it is frozen - can be changed using this object. Raises ------ sherpa.utils.err.ArgumentErr If the `par` argument is invalid: the model component does not exist or the given model has no parameter with that name. See Also -------- set_par : Set the value, limits, or behavior of a model parameter. Examples -------- Return the "c0" parameter of the "bgnd" model component and change it to be frozen: >>> p = get_par('bgnd.c0') >>> p.frozen = True """ return self._check_par(par)
# DOC-NOTE: I have not documented that par can be an actual parameter # since you can just change the values directly then (although # may have to car about order of operations)
[docs] def set_par(self, par, val=None, min=None, max=None, frozen=None): """Set the value, limits, or behavior of a model parameter. Parameters ---------- par : str The name of the parameter, using the format "componentname.parametername". val : number, optional Change the current value of the parameter. min : number, optional Change the minimum value of the parameter (the soft limit). max : number, optional Change the maximum value of the parameter (the soft limit). frozen : bool, optional Freeze (``True``) or thaw (``False``) the parameter. Raises ------ sherpa.utils.err.ArgumentErr If the ``par`` argument is invalid: the model component does not exist or the given model has no parameter with that name. See Also -------- freeze : Fix model parameters so they are not changed by a fit. get_par : Return a parameter of a model component. link : Link a parameter value to an associated value. thaw : Allow model parameters to be varied during a fit. unlink : Unlink a parameter value. Notes ----- The parameter object can be used to change these values directly, by setting the attribute with the same name as the argument - so that:: set_par('emis.flag', val=2, frozen=True) is the same as:: emis.flag.val = 2 emis.flag.frozen = True Examples -------- Change the parameter value to 23. >>> set_par('bgnd.c0', 23) Restrict the line.ampl parameter to be between 1e-4 and 10 and to have a value of 0.1. >>> set_par('line.ampl', 0.1, min=1e-4, max=10) """ self._check_par(par).set(val, min, max, frozen)
[docs] def freeze(self, *args): """Fix model parameters so they are not changed by a fit. The arguments can be parameters or models, in which case all parameters of the model are frozen. If no arguments are given then nothing is changed. Parameters ---------- args : sequence of str or Parameter or Model The parameters or models to freeze. See Also -------- fit : Fit one or more data sets. link : Link a parameter value to an associated value. set_par : Set the value, limits, or behavior of a model parameter. thaw : Allow model parameters to be varied during a fit. unlink : Unlink a parameter value. Notes ----- The `thaw` function can be used to reverse this setting, so that parameters can be varied in a fit. Examples -------- Fix the FWHM parameter of the line model (in this case a `gauss1d` model) so that it will not be varied in the fit. >>> set_source(const1d.bgnd + gauss1d.line) >>> line.fwhm = 2.1 >>> freeze(line.fwhm) >>> fit() Freeze all parameters of the line model and then re-fit: >>> freeze(line) >>> fit() Freeze the nh parameter of the gal model and the abund parameter of the src model: >>> freeze(gal.nh, src.abund) """ for par in list(args): if _is_str(par): par = self._eval_model_expression(par, 'parameter or model') try: par.freeze() except AttributeError as exc: raise ArgumentTypeErr('badarg', 'par', 'a parameter or model object or expression string') from exc
[docs] def thaw(self, *args): """Allow model parameters to be varied during a fit. The arguments can be parameters or models, in which case all parameters of the model are thawed. If no arguments are given then nothing is changed. Parameters ---------- args : sequence of str or Parameter or Model The parameters or models to thaw. See Also -------- fit : Fit one or more data sets. freeze : Fix model parameters so they are not changed by a fit. link : Link a parameter value to an associated value. set_par : Set the value, limits, or behavior of a model parameter. unlink : Unlink a parameter value. Notes ----- The `freeze` function can be used to reverse this setting, so that parameters are "frozen" and so remain constant during a fit. Certain parameters may be marked as "always frozen", in which case using the parameter in a call to `thaw` will raise an error. If the model is sent to `thaw` then the "always frozen" parameter will be skipped. Examples -------- Ensure that the FWHM parameter of the line model (in this case a `gauss1d` model) will be varied in any fit. >>> set_source(const1d.bgnd + gauss1d.line) >>> thaw(line.fwhm) >>> fit() Thaw all parameters of the line model and then re-fit: >>> thaw(line) >>> fit() Thaw the nh parameter of the gal model and the abund parameter of the src model: >>> thaw(gal.nh, src.abund) """ for par in list(args): if _is_str(par): par = self._eval_model_expression(par, 'parameter or model') try: par.thaw() except AttributeError as exc: raise ArgumentTypeErr('badarg', 'par', 'a parameter or model object or expression string') from exc
########################################################################### # Fitting ########################################################################### def _get_fit_ids(self, id: Optional[IdType], otherids: Optional[Sequence[IdType]] = None ) -> list[IdType]: """Return the identifiers that will be used for a fit. This routine does not ensure that the dataset actually exists. Parameters ---------- id: int or str or None If None then this will select all data sets. otherids: sequence of int or str or None, or None When id is not None, the other identifiers to use. Returns ------- idvals : list of int or str The identifiers that may contain data. It will not be empty. """ if id is None: ids = self.list_data_ids() if len(ids) == 0: raise IdentifierErr("getitem", "data set", self._default_id, "has not been set") return ids ids = [id] if otherids is None: return ids for idval in otherids: idval = self._fix_id(idval) if idval not in ids: ids.append(idval) return ids def _get_fit_obj(self, store: Sequence[FitStore], estmethod, numcores=1 ) -> tuple[tuple[IdType, ...], Fit]: """Create the fit object given the data and models. Parameters ---------- store : list of FitStore The per-dataset data and model information. estmethod : `sherpa.estmethods.EstMethod` or None Passed to the Fit object. numcores : int, optional The number of CPU cores to use (this is used when evaluating the models for multiple data sets). Returns ------- ids, fit : tuple, `sherpa.fit.Fit` instance The datasets used and the fit object. Notes ----- The data needed is passed around as a list of tuples as it makes it easy to pass in extra information in derived classes. It could be updated to pass around an object that exposes given fields (e.g. idval, dataset, and model) but at the moment it is not needed. """ if not self._current_method.name == 'gridsearch': for s in store: if s.model.is_discrete: raise ModelErr( "You are trying to fit a model which has a discrete template model component with a continuous optimization method. Since CIAO4.6 this is not possible anymore. Please use gridsearch as the optimization method and make sure that the 'sequence' option is correctly set, or enable interpolation for the templates you are loading (which is the default behavior).") # Data and DataSimulFit do not have a common base class. # d: Union[Data, DataSimulFit] if len(store) == 1: d = store[0].data m = store[0].model else: datasets = [s.data for s in store] d = DataSimulFit('simulfit data', datasets, numcores) models = [s.model for s in store] m = SimulFitModel('simulfit model', models) # Ensure the id value is not repeated, but keep the order (so can not # just convert to a set and back again). # idvals = [] for s in store: idval = s.idval if idval not in idvals: idvals.append(idval) return tuple(idvals), Fit(d, m, self._current_stat, self._current_method, estmethod, self._current_itermethod) def _prepare_fit(self, id: Optional[IdType], otherids: Sequence[IdType] = () ) -> list[FitStore]: """Ensure we have all the requested ids, datasets, and models. This checks whether the dataset is loaded and has an associated source or model. If datasets are explicitly listed then they must contain both data and a model, but when id is None then those data sets which have no model are skipped. Parameters ---------- id: int or str or None If `None` then this fits all data simultaneously. otherids: sequence of int or str or None, or None When id is not None, the other identifiers to use. Returns ------- store : list of FitStore Raises ------ IdentifierErr If there are no datasets with an associated model. """ ids = self._get_fit_ids(id, otherids) # If an id is given then it must have data but does not have to # have a model (to keep with existing behavior). # # At this point ids is not empty. # out = [] for idval in ids: data = self.get_data(idval) try: model = self.get_model(idval) except IdentifierErr: continue out.append(FitStore(idval, data, model)) # Ensure we have something to fit. # if len(out) == 0: raise IdentifierErr("nomodels") return out def _get_fit(self, id: Optional[IdType], otherids: Sequence[IdType] = (), estmethod=None, numcores=1 ) -> tuple[tuple[IdType, ...], Fit]: """Create the fit object for the given identifiers. Given the identifiers (the id and otherids arguments), find the data and models and return a Fit object. Parameters ---------- id : int or str or None The identifier to fit. A value of None means all available datasets with models. otherids : sequence of int or str Additional identifiers to fit. Ignored when id is None. estmethod : `sherpa.estmethods.EstMethod` or None Passed to the Fit object. numcores : int, optional The number of CPU cores to use (this is used when evaluating the models for multiple data sets). Returns ------- ids, fit : tuple, `sherpa.fit.Fit` instance The datasets used (it may not include all the values from id and otherids as those datasets without associated models will be skipped) and the fit object. Raises ------ IdentifierErr If there are no datasets with an associated model. """ store = self._prepare_fit(id, otherids) return self._get_fit_obj(store, estmethod, numcores) def _get_stat_info(self): """Return the stat info structures. For each identifier with a dataset and model, calculate the current statistics (stored in a sherpa.fit.StatInfoResults object), and then - when there are multiple such identifiers - a combined result. Returns ------- stats : list of `sherpa.Fit.StatInfoResults` Raises ------ IdentifierErr If there are no datasets with an associated model. """ store = self._prepare_fit(None) output = [] # Report the per-dataset statistics before the combined data # (only relevant when there's more than one entry). # if len(store) > 1: for s in store: f = Fit(s.data, s.model, self._current_stat) statinfo = f.calc_stat_info() statinfo.name = f'Dataset {s.idval}' statinfo.ids = (s.idval, ) output.append(statinfo) idvals, f = self._get_fit_obj(store, estmethod=None) statinfo = f.calc_stat_info() statinfo.ids = list(idvals) # TODO: list or tuple? if len(store) == 1: statinfo.name = f'Dataset {statinfo.ids}' # TODO: do we want to use ids[0]? else: statinfo.name = f'Datasets {statinfo.ids}' output.append(statinfo) return output
[docs] def calc_stat_info(self): """Display the statistic values for the current models. Displays the statistic value for each data set, and the combined fit, using the current set of models, parameters, and ranges. The output is printed to stdout, and so is intended for use in interactive analysis. The `get_stat_info` function returns the same information but as an array of Python structures. See Also -------- calc_stat : Calculate the fit statistic for a data set. get_stat_info : Return the statistic values for the current models. Notes ----- If a fit to a particular data set has not been made, or values - such as parameter settings, the noticed data range, or choice of statistic - have been changed since the last fit, then the results for that data set may not be meaningful and will therefore bias the results for the simultaneous results. The information returned by `calc_stat_info` includes: Dataset The dataset identifier (or identifiers). Statistic The name of the statistic used to calculate the results. Fit statistic value The current fit statistic value. Data points The number of bins used in the fit. Degrees of freedom The number of bins minus the number of thawed parameters. Some fields are only returned for a subset of statistics: Probability (Q-value) A measure of the probability that one would observe the reduced statistic value, or a larger value, if the assumed model is true and the best-fit model parameters are the true parameter values. Reduced statistic The fit statistic value divided by the number of degrees of freedom. Examples -------- >>> calc_stat_info() """ output = self._get_stat_info() output = [statinfo.format() for statinfo in output] if len(output) > 1: info('\n\n'.join(output)) else: info(output[0])
[docs] def get_stat_info(self): """Return the statistic values for the current models. Calculate the statistic value for each data set, and the combined fit, using the current set of models, parameters, and ranges. Returns ------- stats : array of `sherpa.fit.StatInfoResults` The values for each data set. If there are multiple model expressions then the last element will be the value for the combined data sets. See Also -------- calc_stat : Calculate the fit statistic for a data set. calc_stat_info : Display the statistic values for the current models. get_fit_results : Return the results of the last fit. list_data_ids : List the identifiers for the loaded data sets. list_model_ids : List of all the data sets with a source expression. Notes ----- If a fit to a particular data set has not been made, or values - such as parameter settings, the noticed data range, or choice of statistic - have been changed since the last fit, then the results for that data set may not be meaningful and will therefore bias the results for the simultaneous results. The return value of `get_stat_info` differs to `get_fit_results` since it includes values for each data set, individually, rather than just the combined results. The fields of the object include: name The name of the data set, or sets, as a string. ids A sequence of the data set ids (it may be a tuple or array) included in the results. bkg_ids A sequence of the background data set ids (it may be a tuple or array) included in the results, if any. statname The name of the statistic function (as used in `set_stat`). statval The statistic value. numpoints The number of bins used in the fits. dof The number of degrees of freedom in the fit (the number of bins minus the number of free parameters). qval The Q-value (probability) that one would observe the reduced statistic value, or a larger value, if the assumed model is true and the current model parameters are the true parameter values. This will be ``None`` if the value can not be calculated with the current statistic (e.g. the Cash statistic). rstat The reduced statistic value (the ``statval`` field divided by ``dof``). This is not calculated for all statistics. Examples -------- >>> res = get_stat_info() >>> res[0].statval 498.21750663761935 >>> res[0].dof 439 """ return self._get_stat_info()
[docs] def get_fit_results(self) -> FitResults: """Return the results of the last fit. This function returns the results from the most-recent fit. The returned value includes information on the parameter values and fit statistic. Returns ------- stats : a `sherpa.fit.FitResults` instance The results of the last fit. It does not reflect any changes made to the model parameter, or settings, since the last fit. See Also -------- calc_stat : Calculate the fit statistic for a data set. calc_stat_info : Display the statistic values for the current models. fit : Fit a model to one or more data sets. get_stat_info : Return the statistic values for the current models. set_iter_method : Set the iterative-fitting scheme used in the fit. Notes ----- The fields of the object include: datasets A sequence of the data set ids included in the results. itermethodname What iterated-fit scheme was used, if any (as set by `set_iter_method`). statname The name of the statistic function (as used in `set_stat`). succeeded Was the fit successful (did it converge)? parnames A tuple of the parameter names that were varied in the fit (the thawed parameters in the model expression). parvals A tuple of the parameter values, in the same order as ``parnames``. statval The statistic value after the fit. istatval The statistic value at the start of the fit. dstatval The change in the statistic value (``istatval - statval``). numpoints The number of bins used in the fits. dof The number of degrees of freedom in the fit (the number of bins minus the number of free parameters). qval The Q-value (probability) that one would observe the reduced statistic value, or a larger value, if the assumed model is true and the current model parameters are the true parameter values. This will be ``None`` if the value can not be calculated with the current statistic (e.g. the Cash statistic). rstat The reduced statistic value (the ``statval`` field divided by ``dof``). This is not calculated for all statistics. message A message about the results of the fit (e.g. if the fit was unable to converge). The format and contents depend on the optimisation method. nfev The number of model evaluations made during the fit. Examples -------- Display the fit results: >>> print(get_fit_results()) Inspect the fit results: >>> res = get_fit_results() >>> res.statval 498.21750663761935 >>> res.dof 439 >>> res.parnames ('pl.gamma', 'pl.ampl', 'gline.fwhm', 'gline.pos', 'gline.ampl') >>> res.parvals (-0.20659543380329071, 0.00030398852609788524, 100.0, 4900.0, 0.001) """ if self._fit_results is None: raise SessionErr('nofit', 'fit') return self._fit_results
[docs] def guess(self, id=None, model=None, limits=True, values=True): """Estimate the parameter values and ranges given the loaded data. The guess function can change the parameter values and limits to match the loaded data. This is generally limited to changing the amplitude and position parameters (sometimes just the values and sometimes just the limits). The parameters that are changed depend on the type of model. .. versionchanged:: 4.17.0 The guess routine will now work with composite models and those which include an instrumental response, such as an ARF. It only works on individual models, so the values, and limits, guessed are only approximate. Parameters ---------- id : int or str, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. model Change the parameters of this model component. If ``None``, then the source expression is assumed to consist of a single component, and that component is used. limits : bool Should the parameter limits be changed? The default is ``True``. values : bool Should the parameter values be changed? The default is ``True``. See Also -------- get_default_id : Return the default data set identifier. reset : Reset the model parameters to their default settings. set_par : Set the value, limits, or behavior of a model parameter. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `model` parameter. If given two un-named arguments, then they are interpreted as the `id` and `model` parameters, respectively. The guess function can reduce the time required to fit a data set by moving the parameters closer to a realistic solution. It can also be useful because it can set bounds on the parameter values based on the data: for instance, many two-dimensional models will limit their ``xpos`` and ``ypos`` values to lie within the data area. This can be done manually, but `guess` simplifies this, at least for those parameters that are supported. Instrument models - such as an ARF and RMF - should be set up *before* calling guess. Examples -------- Since the source expression contains only one component, guess can be called with no arguments: >>> set_source(polynom1d.poly) >>> guess() Both components - that is, gal and pl - will be passed to the guess routine, but not all models can have their parameters guessed, and there is no attempt to recognize that the models are combined (in this case by multiplication): >>> set_source(xsphabs.gal * powlaw1d.pl) >>> guess() In this case, guess is called on each component separately. >>> set_source(gauss1d.line + powlaw1d.cont) >>> guess(line) >>> guess(cont) In this example, the values of the ``src`` model component are guessed from the "src" data set, whereas the ``bgnd`` component is guessed from the "bgnd" data set. >>> set_source("src", gauss2d.src + const2d.bgnd) >>> set_source("bgnd", bgnd) >>> guess("src", src) >>> guess("bgnd", bgnd) The above could also have been written as: >>> guess("src", src) >>> guess("bgnd") Set the source model for the default dataset. Guess is run to determine the values of the model component "p1" and the limits of the model component "g1": >>> set_source(powlaw1d.p1 + gauss1d.g1) >>> guess(p1, limits=False) >>> guess(g1, values=False) """ # We can have # id=None, model=None # id=X, model=None # -> is this id=X or model=X # id=X, model=Y # if model is None: # Try to find out if this is a known identifier if id not in self.list_data_ids(): id, model = model, id idval = self._fix_id(id) kwargs = {'limits': limits, 'values': values} if model is not None: model = self._check_model(model) try: model.guess(*self.get_data(idval).to_guess(), **kwargs) except NotImplementedError: warning('No guess found for %s', model.name) return ids, f = self._get_fit(idval) try: f.guess(**kwargs) except NotImplementedError: warning('No guess found for %s', self.get_model(idval).name)
[docs] def calc_stat(self, id: Optional[IdType] = None, *otherids: IdType): """Calculate the fit statistic for a data set. Evaluate the model for one or more data sets, compare it to the data using the current statistic, and return the value. No fitting is done, as the current model parameter, and any filters, are used. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. *otherids : int or str, optional Other data sets to use in the calculation. Returns ------- stat : number The current statistic value. See Also -------- calc_chisqr : Calculate the per-bin chi-squared statistic. calc_stat_info : Display the statistic values for the current models. set_stat : Set the statistical method. Examples -------- Calculate the statistic for the model and data in the default data set: >>> stat = calc_stat() Find the statistic for data set 3: >>> stat = calc_stat(3) When fitting to multiple data sets, you can get the contribution to the total fit statistic from only one data set, or from several by listing the datasets explicitly. The following finds the contribution from the data sets labelled "core" and "jet": >>> stat = calc_stat("core", "jet") Calculate the statistic value using two different statistics: >>> set_stat('cash') >>> s1 = calc_stat() >>> set_stat('cstat') >>> s2 = calc_stat() """ ids, f = self._get_fit(id, otherids) return f.calc_stat()
[docs] def calc_chisqr(self, id: Optional[IdType] = None, *otherids: IdType): """Calculate the per-bin chi-squared statistic. Evaluate the model for one or more data sets, compare it to the data using the current statistic, and return an array of chi-squared values for each bin. No fitting is done, as the current model parameter, and any filters, are used. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. *otherids : int or str, optional Other data sets to use in the calculation. Returns ------- chisq : array or ``None`` The chi-square value for each bin of the data, using the current statistic (as set by `set_stat`). A value of ``None`` is returned if the statistic is not a chi-square distribution. See Also -------- calc_stat : Calculate the fit statistic for a data set. calc_stat_info : Display the statistic values for the current models. set_stat : Set the statistical method. Notes ----- The output array length equals the sum of the arrays lengths of the requested data sets. Examples -------- When called with no arguments, the return value is the chi-squared statistic for each bin in the data sets which have a defined model. >>> calc_chisqr() Supplying a specific data set ID to calc_chisqr - such as "1" or "src" - will return the chi-squared statistic array for only that data set. >>> calc_chisqr(1) >>> calc_chisqr("src") Restrict the calculation to just datasets 1 and 3: >>> calc_chisqr(1, 3) """ ids, f = self._get_fit(id, otherids) return f.calc_chisqr()
# also in sherpa.astro.utils
[docs] def fit(self, id: Optional[IdType] = None, *otherids: IdType, **kwargs ) -> None: """Fit a model to one or more data sets. Use forward fitting to find the best-fit model to one or more data sets, given the chosen statistic and optimization method. The fit proceeds until the results converge or the number of iterations exceeds the maximum value (these values can be changed with `set_method_opt`). An iterative scheme can be added using `set_iter_method` to try and improve the fit. The final fit results are displayed to the screen and can be retrieved with `get_fit_results`. .. versionchanged:: 4.17.0 The outfile parameter can now be sent a Path object or a file handle instead of a string. Parameters ---------- id : int or str, optional The data set that provides the data. If not given then all data sets with an associated model are fit simultaneously. *otherids : int or str, optional Other data sets to use in the calculation. outfile : str, Path, IO object, or None, optional If set, then the fit results will be written to a file with this name. The file contains the per-iteration fit results. clobber : bool, optional This flag controls whether an existing file can be overwritten (``True``) or if it raises an exception (``False``, the default setting). This is only used if `outfile` is set to a string or Path object. Raises ------ sherpa.utils.err.FitErr If `filename` already exists and `clobber` is ``False``. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. contour_fit : Contour the fit to a data set. covar : Estimate the confidence intervals using the confidence method. freeze : Fix model parameters so they are not changed by a fit. get_fit_results : Return the results of the last fit. plot_fit : Plot the fit results (data, model) for a data set. image_fit : Display the data, model, and residuals for a data set in the image viewer. set_stat : Set the statistical method. set_method : Change the optimization method. set_method_opt : Change an option of the current optimization method. set_full_model : Define the convolved model expression for a data set. set_iter_method : Set the iterative-fitting scheme used in the fit. set_model : Set the model expression for a data set. show_fit : Summarize the fit results. thaw : Allow model parameters to be varied during a fit. Notes ----- If outfile is sent a file handle then it is not closed by this routine. Examples -------- Simultaneously fit all data sets with models and then store the results in the variable fres: >>> fit() >>> fres = get_fit_results() Fit just the data set 'img': >>> fit('img') Simultaneously fit data sets 1, 2, and 3: >>> fit(1, 2, 3) Fit data set 'jet' and write the fit results to the text file 'jet.fit', over-writing it if it already exists: >>> fit('jet', outfile='jet.fit', clobber=True) Store the per-iteration values in a StringIO object and extract the data into the variable txt (this avoids the need to create a file): >>> from io import StringIO >>> out = StringIO() >>> fit(outfile=out) >>> txt = out.getvalue() """ ids, f = self._get_fit(id, otherids) res = f.fit(**kwargs) res.datasets = ids self._fit_results = res info(res.format())
# Back-compatibility # DOC-NOTE: can this be noted as deprecated now? simulfit = fit # # Simulation functions #
[docs] def get_pvalue_results(self): """Return the data calculated by the last plot_pvalue call. The `get_pvalue_results` function returns the likelihood ratio test results computed by the `plot_pvalue` command, which compares fits of the null model to fits of the alternative model using faked data with Poisson noise. The likelihood ratio based on the observed data is returned, along with the p-value, used to reject or accept the null model. .. versionchanged:: 4.17.0 The "wstat" statistic can now be used with this routine. .. versionchanged:: 4.15.1 The parnames and parvals attributes have been added. They are intended to debug problem cases and so are not displayed by default. Returns ------- plot : None or a `sherpa.sim.simulate.LikelihoodRatioResults` instance If `plot_pvalue` or `get_pvalue_plot` have been called then the return value is a `sherpa.sim.simulate.LikelihoodRatioResults` instance, otherwise `None` is returned. See Also -------- plot_value : Compute and plot a histogram of likelihood ratios by simulating data. get_pvalue_plot : Return the data used by plot_pvalue. Notes ----- The fields of the returned (`LikelihoodRatioResults`) object are: ratios The calculated likelihood ratio for each iteration. stats The calculated fit statistics for each iteration, stored as the null model and then the alt model in a nsim by 2 array. samples The parameter samples array for each simulation, stored in a nsim by npar array. lr The likelihood ratio of the observed data for the null and alternate models. ppp The p value of the observed data for the null and alternate models. null The fit statistic of the null model on the observed data. alt The fit statistic of the alternate model on the observed data. parnames The names of the fitted parameters in the alternate model. This will be larger than the number of parameters returned in the samples field. parvals The best-fit parameter values to the alternate model for each simulation, stored as a nsim by len(parnames) array. Examples -------- Return the results of the last pvalue analysis and display the results - first using the `format` method, which provides a summary of the data, and then a look at the individual fields in the returned object. The last call displays the contents of one of the fields (`ppp`). >>> res = get_pvalue_results() >>> print(res.format()) >>> print(res) >>> print(res.ppp) Display the ratio values to check they look sensible (such as not dropping to a long range of 0's, although this can also suggest the alternate model is not preferred to the null model): >>> plot_trace(res.ratios, name="ratios") Look at the cumulative distribution of the ratios: >>> plot_cdf(res.ratios, name="ratios") The parvals field shows the fitted parameter values for the alternate model at each iteration: >>> plot_trace(res.parvals[:, 0], name=res.parnames[0]) >>> plot_trace(res.parvals[:, 1], name=res.parnames[1]) """ return self._pvalue_results
# DOC-TODO: improve discussion of how the simulations are done.
[docs] def plot_pvalue(self, null_model, alt_model, conv_model=None, id: IdType = 1, otherids: Sequence[IdType] = (), num=500, bins=25, numcores=None, replot=False, overplot=False, clearwindow=True, **kwargs): """Compute and plot a histogram of likelihood ratios by simulating data. Compare the likelihood of the null model to an alternative model by running a number of simulations to calibrate the likelihood ratio test statistics. The distribution of the simulated likelihood ratios is plotted and compared to the likelihoods of the two models fit to the observed data. The fit statistic must be set to a likelihood-based method, such as "cash" or "cstat". Screen output is created as well as the plot; these values can be retrieved with `get_pvalue_results`. The algorithm is based on the description in Sec.5.2 in "Statistics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio Test" by Protassov et al., 2002, The Astrophysical Journal, 571, 545; <doi:10.1086/339856> .. versionchanged:: 4.17.0 The "wstat" statistic can now be used with this routine. Parameters ---------- null_model The model expression for the null hypothesis. alt_model The model expression for the alternative hypothesis. conv_model : optional An expression used to modify the model so that it can be compared to the data (e.g. a PSF or PHA response). id : int or str, optional The data set that provides the data. The default is 1. otherids : sequence of int or str, optional Other data sets to use in the calculation. num : int, optional The number of simulations to run. The default is 500. bins : int, optional The number of bins to use to create the histogram. The default is 25. numcores : optional The number of CPU cores to use. The default is to use all the cores on the machine. replot : bool, optional Set to ``True`` to use the values calculated by the last call to `plot_pvalue`. The default is ``False``. overplot : bool, optional If ``True`` then add the data to an existing plot, otherwise create a new plot. The default is ``False``. clearwindow : bool, optional Should the existing plot area be cleared before creating this new plot (e.g. for multi-panel plots)? Raises ------ TypeError An invalid statistic. See Also -------- get_pvalue_plot : Return the data used by plot_pvalue. get_pvalue_results : Return the data calculated by the last plot_pvalue call. Notes ----- Each simulation involves creating a data set using the observed data simulated with Poisson noise. For the likelihood ratio test to be valid, the following conditions must hold: 1. The null model is nested within the alternative model. 2. The extra parameters of the alternative model have Gaussian (normal) distributions that are not truncated by the boundaries of the parameter spaces. Examples -------- Use the likelihood ratio to see if the data in data set 1 has a statistically-significant gaussian component: >>> create_model_component('powlaw1d', 'pl') >>> create_model_component('gauss1d', 'gline') >>> plot_pvalue(pl, pl + gline) Use 1000 simulations and use the data from data sets 'core', 'jet1', and 'jet2': >>> mdl1 = pl >>> mdl2 = pl + gline >>> plot_pvalue(mdl1, mdl2, id='core', otherids=('jet1', 'jet2'), ... num=1000) Apply a convolution to the models before fitting: >>> rsp = get_psf() >>> plot_pvalue(mdl1, mdl2, conv_model=rsp) """ lrplot = self.get_pvalue_plot(null_model=null_model, alt_model=alt_model, conv_model=conv_model, id=id, otherids=otherids, num=num, bins=bins, numcores=numcores, recalc=not replot) self._plot(lrplot, overplot=overplot, clearwindow=clearwindow, **kwargs)
[docs] def get_pvalue_plot(self, null_model=None, alt_model=None, conv_model=None, id: IdType = 1, otherids: Sequence[IdType] = (), num=500, bins=25, numcores=None, recalc=False): """Return the data used by plot_pvalue. Access the data arrays and preferences defining the histogram plot produced by the `plot_pvalue` function, a histogram of the likelihood ratios comparing fits of the null model to fits of the alternative model using faked data with Poisson noise. Data returned includes the likelihood ratio computed using the observed data, and the p-value, used to reject or accept the null model. .. versionchanged:: 4.17.0 The "wstat" statistic can now be used with this routine. Parameters ---------- null_model The model expression for the null hypothesis. alt_model The model expression for the alternative hypothesis. conv_model : optional An expression used to modify the model so that it can be compared to the data (e.g. a PSF or PHA response). id : int or str, optional The data set that provides the data. The default is 1. otherids : sequence of int or str, optional Other data sets to use in the calculation. num : int, optional The number of simulations to run. The default is 500. bins : int, optional The number of bins to use to create the histogram. The default is 25. numcores : optional The number of CPU cores to use. The default is to use all the cores on the machine. recalc : bool, optional The default value (``False``) means that the results from the last call to `plot_pvalue` or `get_pvalue_plot` are returned. If ``True``, the values are re-calculated. Returns ------- plot : a `sherpa.plot.LRHistogram` instance See Also -------- get_pvalue_results, plot_pvalue, set_rng Notes ----- The `set_rng` routine is used to control how the random numbers are generated. Examples -------- Return the values from the last call to `plot_pvalue`: >>> pvals = get_pvalue_plot() >>> pvals.ppp 0.472 Run 500 simulations for the two models and print the results: >>> pvals = get_pvalue_plot(mdl1, mdl2, recalc=True, num=500) >>> print(pvals) """ lrplot = self._lrplot if not recalc: return lrplot if null_model is None: raise TypeError("null model cannot be None") if alt_model is None: raise TypeError("alternative model cannot be None") ids, fit = self._get_fit(id, otherids) pvalue = sherpa.sim.LikelihoodRatioTest.run results = pvalue(fit, null_model, alt_model, conv_mdl=conv_model, stat=self._current_stat, method=self._current_method, niter=num, numcores=numcores, rng=self.get_rng()) info(results.format()) self._pvalue_results = results lrplot.prepare(ratios=results.ratios, bins=bins, niter=num, lr=results.lr, ppp=results.ppp) return lrplot
# # Sampling functions # # DOC-TODO: This copies from sherpa/sim/sample.py, so can # docstrings be shared (whether directly or via functools)? # Unfortunately not quite a direct copy, so hard # to see how to do
[docs] def normal_sample(self, num=1, sigma=1, correlate=True, id: Optional[IdType] = None, otherids: Sequence[IdType] = (), numcores=None): """Sample the fit statistic by taking the parameter values from a normal distribution. For each iteration (sample), change the thawed parameters by drawing values from a uni- or multi-variate normal (Gaussian) distribution, and calculate the fit statistic. Parameters ---------- num : int, optional The number of samples to use (default is 1). sigma : number, optional The width of the normal distribution (the default is 1). correlate : bool, optional Should a multi-variate normal be used, with parameters set by the covariance matrix (``True``) or should a uni-variate normal be used (``False``)? id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. otherids : sequence of int or str, optional Other data sets to use in the calculation. numcores : optional The number of CPU cores to use. The default is to use all the cores on the machine. Returns ------- samples A NumPy array table with the first column representing the statistic and later columns the parameters used. See Also -------- fit : Fit a model to one or more data sets. set_model : Set the source model expression for a data set. set_stat : Set the statistical method. t_sample : Sample from the Student's t-distribution. uniform_sample : Sample from a uniform distribution. Notes ----- All thawed model parameters are sampled from the Gaussian distribution, where the mean is set as the best-fit parameter value and the variance is determined by the diagonal elements of the covariance matrix. The multi-variate Gaussian is assumed by default for correlated parameters, using the off-diagonal elements of the covariance matrix. Examples -------- The model fit to the default data set has three free parameters. The median value of the statistic calculated by `normal_sample` is returned: >>> ans = normal_sample(num=10000) >>> ans.shape (1000, 4) >>> np.median(ans[:,0]) 119.82959326927781 """ ids, fit = self._get_fit(id, otherids) return sherpa.sim.normal_sample(fit, num, sigma, correlate, numcores)
# DOC-TODO: improve the description of factor parameter
[docs] def uniform_sample(self, num=1, factor=4, id: Optional[IdType] = None, otherids: Sequence[IdType] = (), numcores=None): """Sample the fit statistic by taking the parameter values from an uniform distribution. For each iteration (sample), change the thawed parameters by drawing values from a uniform distribution, and calculate the fit statistic. Parameters ---------- num : int, optional The number of samples to use (default is 1). factor : number, optional Multiplier to expand the scale parameter (default is 4). id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. otherids : sequence of int or str, optional Other data sets to use in the calculation. numcores : optional The number of CPU cores to use. The default is to use all the cores on the machine. Returns ------- samples A NumPy array table with the first column representing the statistic and later columns the parameters used. See Also -------- fit : Fit a model to one or more data sets. normal_sample : Sample from a normal distribution. set_model : Set the source model expression for a data set. set_stat : Set the statistical method. t_sample : Sample from the Student's t-distribution. Examples -------- The model fit to the default data set has three free parameters. The median value of the statistic calculated by `uniform_sample` is returned: >>> ans = uniform_sample(num=10000) >>> ans.shape (1000, 4) >>> np.median(ans[:,0]) 284.66534775948134 """ ids, fit = self._get_fit(id, otherids) return sherpa.sim.uniform_sample(fit, num, factor, numcores)
[docs] def t_sample(self, num=1, dof=None, id: Optional[IdType] = None, otherids: Sequence[IdType] = (), numcores=None): """Sample the fit statistic by taking the parameter values from a Student's t-distribution. For each iteration (sample), change the thawed parameters by drawing values from a Student's t-distribution, and calculate the fit statistic. Parameters ---------- num : int, optional The number of samples to use (default is 1). dof : optional The number of degrees of freedom to use (the default is to use the number from the current fit). id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. otherids : sequence of int or str, optional Other data sets to use in the calculation. numcores : optional The number of CPU cores to use. The default is to use all the cores on the machine. Returns ------- samples A NumPy array table with the first column representing the statistic and later columns the parameters used. See Also -------- fit : Fit a model to one or more data sets. normal_sample : Sample from the normal distribution. set_model : Set the source model expression for a data set. set_stat : Set the statistical method. uniform_sample : Sample from a uniform distribution. Examples -------- The model fit to the default data set has three free parameters. The median value of the statistic calculated by `t_sample` is returned: >>> ans = t_sample(num=10000) >>> ans.shape (1000, 4) >>> np.median(ans[:,0]) 119.9764357725326 """ ids, fit = self._get_fit(id, otherids) if dof is None: dof = (len(fit.data.eval_model_to_fit(fit.model)) - len(fit.model.thawedpars)) return sherpa.sim.t_sample(fit, num, dof, numcores)
########################################################################### # Error estimation ########################################################################### # DOC-TODO: how best to document the settings? # DOC-TODO: have I got soft_limits described correctly?
[docs] def get_covar(self): """Return the covariance estimation object. Returns ------- covar : object See Also -------- covar : Estimate parameter confidence intervals using the covariance method. get_covar_opt : Return one or all of the options for the covariance method. set_covar_opt : Set an option of the covar estimation object. Notes ----- The attributes of the covariance object include: ``eps`` The precision of the calculated limits. The default is 0.01. ``maxiters`` The maximum number of iterations allowed before stopping for that parameter. The default is 200. ``sigma`` What is the error limit being calculated. The default is 1. ``soft_limits`` Should the search be restricted to the soft limits of the parameters (``True``), or can parameter values go out all the way to the hard limits if necessary (``False``). The default is ``False`` Examples -------- >>> print(get_covar()) name = covariance sigma = 1 maxiters = 200 soft_limits = False eps = 0.01 Change the ``sigma`` field to 1.9. >>> cv = get_covar() >>> cv.sigma = 1.6 """ return self._estmethods['covariance']
# DOC-TODO: how best to document the settings? # DOC-TODO: have I got soft_limits described correctly? # DOC-TODO: when verbose=True how is extra output displayed? # stdout, stderr, sherpa logging?
[docs] def get_conf(self): """Return the confidence-interval estimation object. Returns ------- conf : object See Also -------- conf : Estimate parameter confidence intervals using the confidence method. get_conf_opt : Return one or all of the options for the confidence interval method. set_conf_opt : Set an option of the conf estimation object. Notes ----- The attributes of the confidence-interval object include: ``eps`` The precision of the calculated limits. The default is 0.01. ``fast`` If ``True`` then the fit optimization used may be changed from the current setting (only for the error analysis) to use a faster optimization method. The default is ``False``. ``max_rstat`` If the reduced chi square is larger than this value, do not use (only used with chi-square statistics). The default is 3. ``maxfits`` The maximum number of re-fits allowed (that is, when the ``remin`` filter is met). The default is 5. ``maxiters`` The maximum number of iterations allowed when bracketing limits, before stopping for that parameter. The default is 200. ``numcores`` The number of computer cores to use when evaluating results in parallel. This is only used if ``parallel`` is ``True``. The default is to use all cores. ``openinterval`` How the `conf` method should cope with intervals that do not converge (that is, when the ``maxiters`` limit has been reached). The default is ``False``. ``parallel`` If there is more than one free parameter then the results can be evaluated in parallel, to reduce the time required. The default is ``True``. ``remin`` The minimum difference in statistic value for a new fit location to be considered better than the current best fit (which starts out as the starting location of the fit at the time `conf` is called). The default is 0.01. ``sigma`` What is the error limit being calculated. The default is 1. ``soft_limits`` Should the search be restricted to the soft limits of the parameters (``True``), or can parameter values go out all the way to the hard limits if necessary (``False``). The default is ``False`` ``tol`` The tolerance for the fit. The default is 0.2. ``verbose`` Should extra information be displayed during fitting? The default is ``False``. Examples -------- >>> print(get_conf()) name = confidence numcores = 8 verbose = False openinterval = False max_rstat = 3 maxiters = 200 soft_limits = False eps = 0.01 fast = False maxfits = 5 remin = 0.01 tol = 0.2 sigma = 1 parallel = True Change the ``remin`` field to 0.05. >>> cf = get_conf() >>> cf.remin = 0.05 """ return self._estmethods['confidence']
[docs] def get_proj(self): """Return the confidence-interval estimation object. .. note:: The `conf` function should be used instead of `proj`. Returns ------- proj : object See Also -------- conf : Estimate parameter confidence intervals using the confidence method. get_proj_opt : Return one or all of the options for the confidence interval method. proj : Estimate confidence intervals for fit parameters. set_proj_opt : Set an option of the proj estimation object. Notes ----- The attributes of the object include: ``eps`` The precision of the calculated limits. The default is 0.01. ``fast`` If ``True`` then the fit optimization used may be changed from the current setting (only for the error analysis) to use a faster optimization method. The default is ``False``. ``max_rstat`` If the reduced chi square is larger than this value, do not use (only used with chi-square statistics). The default is 3. ``maxfits`` The maximum number of re-fits allowed (that is, when the ``remin`` filter is met). The default is 5. ``maxiters`` The maximum number of iterations allowed when bracketing limits, before stopping for that parameter. The default is 200. ``numcores`` The number of computer cores to use when evaluating results in parallel. This is only used if ``parallel`` is ``True``. The default is to use all cores. ``parallel`` If there is more than one free parameter then the results can be evaluated in parallel, to reduce the time required. The default is ``True``. ``remin`` The minimum difference in statistic value for a new fit location to be considered better than the current best fit (which starts out as the starting location of the fit at the time `proj` is called). The default is 0.01. ``sigma`` What is the error limit being calculated. The default is 1. ``soft_limits`` Should the search be restricted to the soft limits of the parameters (``True``), or can parameter values go out all the way to the hard limits if necessary (``False``). The default is ``False`` ``tol`` The tolerance for the fit. The default is 0.2. Examples -------- >>> print(get_proj()) name = projection numcores = 8 max_rstat = 3 maxiters = 200 soft_limits = False eps = 0.01 fast = False maxfits = 5 remin = 0.01 tol = 0.2 sigma = 1 parallel = True """ return self._estmethods['projection']
# New "wrappers" to access estimation methods without calling # get_proj(), etc. def _check_estmethod_opt(self, estmethod, optname): _check_str_type(optname, "optname") if optname not in estmethod.config: raise ArgumentErr('badopt', optname, estmethod.name) def _get_estmethod_opt(self, methodname, optname=None): meth = self._estmethods.get(methodname.lower()) if meth is None: raise ArgumentErr('badconf', methodname) if optname is None: return meth.config self._check_estmethod_opt(meth, optname) return meth.config[optname] def _set_estmethod_opt(self, methodname, optname, val): meth = self._estmethods.get(methodname.lower()) if meth is None: raise ArgumentErr('badconf', methodname) self._check_estmethod_opt(meth, optname) meth.config[optname] = val
[docs] def get_covar_opt(self, name=None): """Return one or all of the options for the covariance method. This is a helper function since the options can also be read directly using the object returned by `get_covar`. Parameters ---------- name : str, optional If not given, a dictionary of all the options are returned. When given, the individual value is returned. Returns ------- value : dictionary or value Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- covar : Estimate parameter confidence intervals using the covariance method. get_covar : Return the covariance estimation object. set_covar_opt : Set an option of the covar estimation object. Examples -------- >>> get_covar_opt('sigma') 1 >>> copts = get_covar_opt() >>> copts['sigma'] 1 """ return self._get_estmethod_opt('covariance', name)
[docs] def get_conf_opt(self, name=None): """Return one or all of the options for the confidence interval method. This is a helper function since the options can also be read directly using the object returned by `get_conf`. Parameters ---------- name : str, optional If not given, a dictionary of all the options are returned. When given, the individual value is returned. Returns ------- value : dictionary or value Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. get_conf : Return the confidence-interval estimation object. set_conf_opt : Set an option of the conf estimation object. Examples -------- >>> get_conf_opt('verbose') False >>> copts = get_conf_opt() >>> copts['verbose'] False """ return self._get_estmethod_opt('confidence', name)
[docs] def get_proj_opt(self, name=None): """Return one or all of the options for the confidence interval method. .. note:: The `conf` function should be used instead of `proj`. This is a helper function since the options can also be read directly using the object returned by `get_proj`. Parameters ---------- name : str, optional If not given, a dictionary of all the options are returned. When given, the individual value is returned. Returns ------- value : dictionary or value Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. proj : Estimate confidence intervals for fit parameters. get_proj : Return the confidence-interval estimation object. set_proj_opt : Set an option of the proj estimation object. Examples -------- >>> get_proj_opt('sigma') 1 >>> popts = get_proj_opt() >>> popts['sigma'] 1 """ return self._get_estmethod_opt('projection', name)
[docs] def set_covar_opt(self, name, val): """Set an option for the covariance method. This is a helper function since the options can also be set directly using the object returned by `get_covar`. Parameters ---------- name : str The name of the option to set. The `get_covar` routine can be used to find out valid values for this argument. val The new value for the option. Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- covar : Estimate parameter confidence intervals using the covariance method. get_covar : Return the covar estimation object. get_covar_opt : Return one or all options of the covar estimation object. Examples -------- >>> set_covar_opt('sigma', 1.6) """ self._set_estmethod_opt('covariance', name, val)
[docs] def set_conf_opt(self, name, val): """Set an option for the confidence interval method. This is a helper function since the options can also be set directly using the object returned by `get_conf`. Parameters ---------- name : str The name of the option to set. The `get_conf` routine can be used to find out valid values for this argument. val The new value for the option. Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. get_conf : Return the conf estimation object. get_conf_opt : Return one or all options of the conf estimation object. Examples -------- >>> set_conf_opt('parallel', False) """ self._set_estmethod_opt('confidence', name, val)
[docs] def set_proj_opt(self, name, val): """Set an option for the projection method. .. note:: The `conf` function should be used instead of `proj`. This is a helper function since the options can also be set directly using the object returned by `get_proj`. Parameters ---------- name : str The name of the option to set. The `get_proj` routine can be used to find out valid values for this argument. val The new value for the option. Raises ------ sherpa.utils.err.ArgumentErr If the ``name`` argument is not recognized. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. proj : Estimate parameter confidence intervals using the projection method. get_proj : Return the proj estimation object. get_proj_opt : Return one or all options of the proj estimation object. Examples -------- >>> set_proj_opt('parallel', False) """ self._set_estmethod_opt('projection', name, val)
[docs] def get_covar_results(self): """Return the results of the last `covar` run. Returns ------- results : sherpa.fit.ErrorEstResults object Raises ------ sherpa.utils.err.SessionErr If no `covar` call has been made. See Also -------- get_covar_opt : Return one or all of the options for the covariance method. set_covar_opt : Set an option of the covar estimation object. Notes ----- The fields of the object include: ``datasets`` A tuple of the data sets used in the analysis. ``methodname`` This will be 'covariance'. ``iterfitname`` The name of the iterated-fit method used, if any. ``fitname`` The name of the optimization method used. ``statname`` The name of the fit statistic used. ``sigma`` The sigma value used to calculate the confidence intervals. ``percent`` The percentage of the signal contained within the confidence intervals (calculated from the ``sigma`` value assuming a normal distribution). ``parnames`` A tuple of the parameter names included in the analysis. ``parvals`` A tuple of the best-fit parameter values, in the same order as ``parnames``. ``parmins`` A tuple of the lower error bounds, in the same order as ``parnames``. ``parmaxes`` A tuple of the upper error bounds, in the same order as ``parnames``. ``nfits`` The number of model evaluations. There is also an ``extra_output`` field which is used to return the covariance matrix. Examples -------- >>> res = get_covar_results() >>> print(res) datasets = (1,) methodname = covariance iterfitname = none fitname = levmar statname = chi2gehrels sigma = 1 percent = 68.2689492137 parnames = ('bgnd.c0',) parvals = (10.228675427602724,) parmins = (-2.4896739438296795,) parmaxes = (2.4896739438296795,) nfits = 0 In this case, of a single parameter, the covariance matrix is just the variance of the parameter: >>> res.extra_output array([[ 6.19847635]]) """ if self._covariance_results is None: raise SessionErr('noaction', "covariance") return self._covariance_results
[docs] def get_conf_results(self): """Return the results of the last `conf` run. Returns ------- results : sherpa.fit.ErrorEstResults object Raises ------ sherpa.utils.err.SessionErr If no `conf` call has been made. See Also -------- get_conf_opt : Return one or all of the options for the confidence interval method. set_conf_opt : Set an option of the conf estimation object. Notes ----- The fields of the object include: ``datasets`` A tuple of the data sets used in the analysis. ``methodname`` This will be 'confidence'. ``iterfitname`` The name of the iterated-fit method used, if any. ``fitname`` The name of the optimization method used. ``statname`` The name of the fit statistic used. ``sigma`` The sigma value used to calculate the confidence intervals. ``percent`` The percentage of the signal contained within the confidence intervals (calculated from the ``sigma`` value assuming a normal distribution). ``parnames`` A tuple of the parameter names included in the analysis. ``parvals`` A tuple of the best-fit parameter values, in the same order as ``parnames``. ``parmins`` A tuple of the lower error bounds, in the same order as ``parnames``. ``parmaxes`` A tuple of the upper error bounds, in the same order as ``parnames``. ``nfits`` The number of model evaluations. Examples -------- >>> res = get_conf_results() >>> print(res) datasets = (1,) methodname = confidence iterfitname = none fitname = levmar statname = chi2gehrels sigma = 1 percent = 68.2689492137 parnames = ('p1.gamma', 'p1.ampl') parvals = (2.1585155113403327, 0.00022484014787994827) parmins = (-0.082785567348122591, -1.4825550342799376e-05) parmaxes = (0.083410634144100104, 1.4825550342799376e-05) nfits = 13 The following converts the above into a dictionary where the keys are the parameter names and the values are the tuple (best-fit value, lower-limit, upper-limit): >>> pvals1 = zip(res.parvals, res.parmins, res.parmaxes) >>> pvals2 = [(v, v+l, v+h) for (v, l, h) in pvals1] >>> dres = dict(zip(res.parnames, pvals2)) >>> dres['p1.gamma'] (2.1585155113403327, 2.07572994399221, 2.241926145484433) """ if self._confidence_results is None: raise SessionErr('noaction', "confidence") return self._confidence_results
[docs] def get_proj_results(self): """Return the results of the last `proj` run. .. note:: The `conf` function should be used instead of `proj`. Returns ------- results : sherpa.fit.ErrorEstResults object Raises ------ sherpa.utils.err.SessionErr If no `proj` call has been made. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. proj : Estimate confidence intervals for fit parameters. get_proj_opt : Return one or all of the options for the projection method. set_proj_opt : Set an option of the proj estimation object. Notes ----- The fields of the object include: ``datasets`` A tuple of the data sets used in the analysis. ``methodname`` This will be 'projection'. ``iterfitname`` The name of the iterated-fit method used, if any. ``fitname`` The name of the optimization method used. ``statname`` The name of the fit statistic used. ``sigma`` The sigma value used to calculate the confidence intervals. ``percent`` The percentage of the signal contained within the confidence intervals (calculated from the ``sigma`` value assuming a normal distribution). ``parnames`` A tuple of the parameter names included in the analysis. ``parvals`` A tuple of the best-fit parameter values, in the same order as ``parnames``. ``parmins`` A tuple of the lower error bounds, in the same order as ``parnames``. ``parmaxes`` A tuple of the upper error bounds, in the same order as ``parnames``. ``nfits`` The number of model evaluations. Examples -------- >>> res = get_proj_results() >>> print(res) datasets = ('src',) methodname = projection iterfitname = none fitname = levmar statname = chi2gehrels sigma = 1 percent = 68.2689492137 parnames = ('bgnd.c0',) parvals = (9.1958148476800918,) parmins = (-2.0765029551804268,) parmaxes = (2.0765029551935186,) nfits = 0 """ if self._projection_results is None: raise SessionErr('noaction', "projection") return self._projection_results
def _est_errors(self, args, methodname): """Evaluate the errors for the given arguments. The formatted output of the estimation is logged at the info level. Parameters ---------- args : sequence of sherpa.models.Parameter, sherpa.models.Model, int, or str The dataset (when an integer or str) to evaluate, the model parameter to apply the error estimate on (must be thawed), or a model from which all the thawed parameters are used. methodname : str One of the valid error estimates (sub-classes of sherpa.estmethods.EstMethod). Returns ------- result : sherpa.fit.ErrorEstResults instance """ id = None parlist = [] otherids = [] for arg in args: if isinstance(arg, sherpa.models.Parameter): if arg.frozen: raise ParameterErr('frozen', arg.fullname) parlist.append(arg) continue if isinstance(arg, Model): norig = len(parlist) for par in arg.pars: if not par.frozen: parlist.append(par) # If there were no free parameters then error out. # Should this be a ParameterErr or a ModelErr? Neither # have an existing label for this case. Pick ParameterErr # to match the case when a single parameter is frozen. # if len(parlist) == norig: emsg = f"Model '{arg.name}' has no thawed parameters" raise ParameterErr(emsg) continue if id is None: id = arg else: otherids.append(arg) if len(parlist) == 0: parlist = None ids, f = self._get_fit(id, otherids, self._estmethods[methodname]) res = f.est_errors(self._methods, parlist) res.datasets = ids info(res.format()) return res # DOC-TODO: include screen output of covar() ?
[docs] def covar(self, *args): """Estimate parameter confidence intervals using the covariance method. The `covar` command computes confidence interval bounds for the specified model parameters in the dataset, using the covariance matrix of the statistic. The `get_covar` and `set_covar_opt` commands can be used to configure the error analysis; an example being changing the ``sigma`` field to 1.6 (i.e. 90%) from its default value of 1. The output from the routine is displayed on screen, and the `get_covar_results` routine can be used to retrieve the results. Parameters ---------- id : int or str, optional The data set, or sets, that provides the data. If not given then all data sets with an associated model are used simultaneously. parameter : sherpa.models.parameter.Parameter, optional The default is to calculate the confidence limits on all thawed parameters of the model, or models, for all the data sets. The evaluation can be restricted by listing the parameters to use. Note that each parameter should be given as a separate argument, rather than as a list. For example ``covar(g1.ampl, g1.sigma)``. model : sherpa.models.model.Model, optional Select all the thawed parameters in the model. See Also -------- covar : Estimate the confidence intervals using the confidence method. get_covar : Return the covariance estimation object. get_covar_results : Return the results of the last `covar` run. int_proj : Plot the statistic value as a single parameter is varied. int_unc : Plot the statistic value as a single parameter is varied. reg_proj : Plot the statistic value as two parameters are varied. reg_unc : Plot the statistic value as two parameters are varied. set_covar_opt : Set an option of the `covar` estimation object. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with multiple ``ids`` or ``parameters`` values, the order is unimportant, since any argument that is not defined as a model parameter is assumed to be a data id. The `covar` command is different to `conf`, in that in that all other thawed parameters are fixed, rather than being allowed to float to new best-fit values. While `conf` is more general (e.g. allowing the user to examine the parameter space away from the best-fit point), it is in the strictest sense no more accurate than `covar` for determining confidence intervals. An estimated confidence interval is accurate if and only if: 1. the chi^2 or logL surface in parameter space is approximately shaped like a multi-dimensional paraboloid, and 2. the best-fit point is sufficiently far from parameter space boundaries. One may determine if these conditions hold, for example, by plotting the fit statistic as a function of each parameter's values (the curve should approximate a parabola) and by examining contour plots of the fit statistics made by varying the values of two parameters at a time (the contours should be elliptical, and parameter space boundaries should be no closer than approximately 3 sigma from the best-fit point). The `int_proj` and `reg_proj` commands may be used for this. If either of the conditions given above does not hold, then the output from `covar` may be meaningless except to give an idea of the scale of the confidence intervals. To accurately determine the confidence intervals, one would have to reparameterize the model, use Monte Carlo simulations, or Bayesian methods. As `covar` estimates intervals for each parameter independently, the relationship between sigma and the change in statistic value delta_S can be particularly simple: sigma = the square root of delta_S for statistics sampled from the chi-square distribution and for the Cash statistic, and is approximately equal to the square root of (2 * delta_S) for fits based on the general log-likelihood. The default setting is to calculate the one-sigma interval, which can be changed with the ``sigma`` option to `set_covar_opt` or `get_covar`. Examples -------- Evaluate confidence intervals for all thawed parameters in all data sets with an associated source model. The results are then stored in the variable ``res``. >>> covar() >>> res = get_covar_results() Only evaluate the parameters associated with data set 2. >>> covar(2) Only evaluate the intervals for the ``pos.xpos`` and ``pos.ypos`` parameters: >>> covar(pos.xpos, pos.ypos) Change the limits to be 1.6 sigma (90%) rather than the default 1 sigma. >>> set_covar_ope('sigma', 1.6) >>> covar() Only evaluate the ``clus.kt`` parameter for the data sets with identifiers "obs1", "obs5", and "obs6". This will still use the 1.6 sigma setting from the previous run. >>> covar("obs1", "obs5", "obs6", clus.kt) Estimate the errors for all the thawed parameters from the ``line`` model and the ``clus.kt`` parameter for datasets 1, 3, and 4: >>> covar(1, 3, 4, line, clus.kt) """ self._covariance_results = self._est_errors(args, 'covariance')
# DOC-TODO: include screen output of conf() ?
[docs] def conf(self, *args): """Estimate parameter confidence intervals using the confidence method. The `conf` command computes confidence interval bounds for the specified model parameters in the dataset. A given parameter's value is varied along a grid of values while the values of all the other thawed parameters are allowed to float to new best-fit values. The `get_conf` and `set_conf_opt` commands can be used to configure the error analysis; an example being changing the 'sigma' field to ``1.6`` (i.e. 90%) from its default value of ``1``. The output from the routine is displayed on screen, and the `get_conf_results` routine can be used to retrieve the results. Parameters ---------- id : int or str, optional The data set, or sets, that provides the data. If not given then all data sets with an associated model are used simultaneously. parameter : sherpa.models.parameter.Parameter, optional The default is to calculate the confidence limits on all thawed parameters of the model, or models, for all the data sets. The evaluation can be restricted by listing the parameters to use. Note that each parameter should be given as a separate argument, rather than as a list. For example ``conf(g1.ampl, g1.sigma)``. model : sherpa.models.model.Model, optional Select all the thawed parameters in the model. See Also -------- covar : Estimate the confidence intervals using the covariance method. get_conf : Return the confidence-interval estimation object. get_conf_results : Return the results of the last `conf` run. int_proj : Plot the statistic value as a single parameter is varied. int_unc : Plot the statistic value as a single parameter is varied. reg_proj : Plot the statistic value as two parameters are varied. reg_unc : Plot the statistic value as two parameters are varied. set_conf_opt : Set an option of the `conf` estimation object. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with multiple ``ids`` or ``parameters`` values, the order is unimportant, since any argument that is not defined as a model parameter is assumed to be a data id. The `conf` function is different to `covar`, in that in that all other thawed parameters are allowed to float to new best-fit values, instead of being fixed to the initial best-fit values as they are in `covar`. While `conf` is more general (e.g. allowing the user to examine the parameter space away from the best-fit point), it is in the strictest sense no more accurate than `covar` for determining confidence intervals. The `conf` function is a replacement for the `proj` function, which uses a different algorithm to estimate parameter confidence limits. An estimated confidence interval is accurate if and only if: 1. the chi^2 or logL surface in parameter space is approximately shaped like a multi-dimensional paraboloid, and 2. the best-fit point is sufficiently far from parameter space boundaries. One may determine if these conditions hold, for example, by plotting the fit statistic as a function of each parameter's values (the curve should approximate a parabola) and by examining contour plots of the fit statistics made by varying the values of two parameters at a time (the contours should be elliptical, and parameter space boundaries should be no closer than approximately 3 sigma from the best-fit point). The `int_proj` and `reg_proj` commands may be used for this. If either of the conditions given above does not hold, then the output from `conf` may be meaningless except to give an idea of the scale of the confidence intervals. To accurately determine the confidence intervals, one would have to reparameterize the model, use Monte Carlo simulations, or Bayesian methods. As the calculation can be computer intensive, the default behavior is to use all available CPU cores to speed up the analysis. This can be changed be varying the ``numcores`` option - or setting ``parallel`` to ``False`` - either with `set_conf_opt` or `get_conf`. As `conf` estimates intervals for each parameter independently, the relationship between sigma and the change in statistic value delta_S can be particularly simple: sigma = the square root of delta_S for statistics sampled from the chi-square distribution and for the Cash statistic, and is approximately equal to the square root of (2 * delta_S) for fits based on the general log-likelihood. The default setting is to calculate the one-sigma interval, which can be changed with the ``sigma`` option to `set_conf_opt` or `get_conf`. The limit calculated by `conf` is basically a 1-dimensional root in the translated coordinate system (translated by the value of the statistic at the minimum plus sigma^2). The Taylor series expansion of the multi-dimensional function at the minimum is:: f(x + dx) ~ f(x) + grad( f(x) )^T dx + dx^T Hessian( f(x) ) dx + ... where x is understood to be the n-dimensional vector representing the free parameters to be fitted and the super-script 'T' is the transpose of the row-vector. At or near the minimum, the gradient of the function is zero or negligible, respectively. So the leading term of the expansion is quadratic. The best root finding algorithm for a curve which is approximately parabolic is Muller's method [1]. Muller's method is a generalization of the secant method [2]: the secant method is an iterative root finding method that approximates the function by a straight line through two points, whereas Muller's method is an iterative root finding method that approxmiates the function by a quadratic polynomial through three points. Three data points are the minimum input to Muller's root finding method. The first point to be submitted to the Muller's root finding method is the point at the minimum. To strategically choose the other two data points, the confidence function uses the output from covariance as the second data point. To generate the third data points for the input to Muller's root finding method, the secant root finding method is used since it only requires two data points to generate the next best approximation of the root. However, there are cases where `conf` cannot locate the root even though the root is bracketed within an interval (perhaps due to the bad resolution of the data). In such cases, when the option ``openinterval`` is set to ``False`` (which is the default), the routine will print a warning message about not able to find the root within the set tolerance and the function will return the average of the open interval which brackets the root. If ``openinterval`` is set to ``True`` then `conf` will print the minimal open interval which brackets the root (not to be confused with the lower and upper bound of the confidence interval). The most accurate thing to do is to return an open interval where the root is localized/bracketed rather then the average of the open interval (since the average of the interval is not a root within the specified tolerance). References ---------- 1. Muller, David E., "A Method for Solving Algebraic Equations Using an Automatic Computer," MTAC, 10 (1956), 208-215. 2. Numerical Recipes in Fortran, 2nd edition, 1986, Press et al., p. 347 Examples -------- Evaluate confidence intervals for all thawed parameters in all data sets with an associated source model. The results are then stored in the variable ``res``. >>> conf() >>> res = get_conf_results() Only evaluate the parameters associated with data set 2: >>> conf(2) Only evaluate the intervals for the ``pos.xpos`` and ``pos.ypos`` parameters: >>> conf(pos.xpos, pos.ypos) Change the limits to be 1.6 sigma (90%) rather than the default 1 sigma. >>> set_conf_opt('sigma', 1.6) >>> conf() Only evaluate the ``clus.kt`` parameter for the data sets with identifiers "obs1", "obs5", and "obs6". This will still use the 1.6 sigma setting from the previous run. >>> conf("obs1", "obs5", "obs6", clus.kt) Only use two cores when evaluating the errors for the parameters used in the model for data set 3: >>> set_conf_opt('numcores', 2) >>> conf(3) Estimate the errors for all the thawed parameters from the ``line`` model and the ``clus.kt`` parameter for datasets 1, 3, and 4: >>> conf(1, 3, 4, line, clus.kt) """ self._confidence_results = self._est_errors(args, 'confidence')
# DOC-TODO: add a deprecation note?
[docs] def proj(self, *args): """Estimate parameter confidence intervals using the projection method. .. note:: The `conf` function should be used instead of `proj`. The `proj` command computes confidence interval bounds for the specified model parameters in the dataset. A given parameter's value is varied along a grid of values while the values of all the other thawed parameters are allowed to float to new best-fit values. The `get_proj` and `set_proj_opt` commands can be used to configure the error analysis; an example being changing the 'sigma' field to ``1.6`` (i.e. 90%) from its default value of ``1``. The output from the routine is displayed on screen, and the `get_proj_results` routine can be used to retrieve the results. Parameters ---------- id : int or str, optional The data set, or sets, that provides the data. If not given then all data sets with an associated model are used simultaneously. parameter : sherpa.models.parameter.Parameter, optional The default is to calculate the confidence limits on all thawed parameters of the model, or models, for all the data sets. The evaluation can be restricted by listing the parameters to use. Note that each parameter should be given as a separate argument, rather than as a list. For example ``proj(g1.ampl, g1.sigma)``. model : sherpa.models.model.Model, optional Select all the thawed parameters in the model. See Also -------- conf : Estimate parameter confidence intervals using the confidence method. covar : Estimate the confidence intervals using the covariance method. get_proj : Return the confidence-interval estimation object. get_proj_results : Return the results of the last `proj` run. int_proj : Plot the statistic value as a single parameter is varied. reg_proj : Plot the statistic value as two parameters are varied. set_proj_opt : Set an option of the `proj` estimation object. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with multiple ``ids`` or ``parameters`` values, the order is unimportant, since any argument that is not defined as a model parameter is assumed to be a data id. The `proj` command is different to `covar`, in that all other thawed parameters are allowed to float to new best-fit values, instead of being fixed to the initial best-fit values. While `proj` is more general (e.g. allowing the user to examine the parameter space away from the best-fit point), it is in the strictest sense no more accurate than `covar` for determining confidence intervals. An estimated confidence interval is accurate if and only if: 1. the chi^2 or logL surface in parameter space is approximately shaped like a multi-dimensional paraboloid, and 2. the best-fit point is sufficiently far from parameter space boundaries. One may determine if these conditions hold, for example, by plotting the fit statistic as a function of each parameter's values (the curve should approximate a parabola) and by examining contour plots of the fit statistics made by varying the values of two parameters at a time (the contours should be elliptical, and parameter space boundaries should be no closer than approximately 3 sigma from the best-fit point). The `int_proj` and `reg_proj` commands may be used for this. If either of the conditions given above does not hold, then the output from `proj` may be meaningless except to give an idea of the scale of the confidence intervals. To accurately determine the confidence intervals, one would have to reparameterize the model, use Monte Carlo simulations, or Bayesian methods. As the calculation can be computer intensive, the default behavior is to use all available CPU cores to speed up the analysis. This can be changed be varying the ``numcores`` option - or setting ``parallel`` to ``False`` - either with `set_proj_opt` or `get_proj`. As `proj` estimates intervals for each parameter independently, the relationship between sigma and the change in statistic value delta_S can be particularly simple: sigma = the square root of delta_S for statistics sampled from the chi-square distribution and for the Cash statistic, and is approximately equal to the square root of (2 * delta_S) for fits based on the general log-likelihood. The default setting is to calculate the one-sigma interval, which can be changed with the ``sigma`` option to `set_proj_opt` or `get_proj`. """ self._projection_results = self._est_errors(args, 'projection')
# Aliases get_covariance_results = get_covar_results get_confidence_results = get_conf_results get_projection_results = get_proj_results covariance = covar confidence = conf projection = proj ########################################################################### # PyBLoCXS routines for Markov Chain Monte Carlo # # DOC-TODO: should this use functools.wraps or something similar, # to avoid copying the docs? ###########################################################################
[docs] def set_sampler_opt(self, opt, value): """Set an option for the current MCMC sampler. Parameters ---------- opt : str The option to change. Use `get_sampler` to view the available options for the current sampler. value The value for the option. See Also -------- get_sampler : Return the current MCMC sampler options. set_prior: Set the prior function to use with a parameter. set_sampler : Set the MCMC sampler. Notes ----- The options depend on the sampler. The options include: defaultprior Set to ``False`` when the default prior (flat, between the parameter's soft limits) should not be used. Use `set_prior` to set the form of the prior for each parameter. inv A bool, or array of bools, to indicate which parameter is on the inverse scale. log A bool, or array of bools, to indicate which parameter is on the logarithm (natural log) scale. original A bool, or array of bools, to indicate which parameter is on the original scale. p_M The proportion of jumps generated by the Metropolis jumping rule. priorshape An array of bools indicating which parameters have a user-defined prior functions set with `set_prior`. scale Multiply the output of `covar` by this factor and use the result as the scale of the t-distribution. Examples -------- >>> set_sampler_opt('scale', 3) """ self._pyblocxs.set_sampler_opt(opt, value)
[docs] def get_sampler_opt(self, opt): """Return an option of the current MCMC sampler. Returns ------- opt : str The name of the option. The fields depend on the current sampler. See Also -------- get_sampler : Return the current MCMC sampler options. set_sampler_opt : Set an option for the current MCMC sampler. Examples -------- >>> get_sampler_opt('log') False """ return self._pyblocxs.get_sampler_opt(opt)
[docs] def get_sampler_name(self): """Return the name of the current MCMC sampler. Returns ------- name : str See Also -------- get_sampler : Return the current MCMC sampler options. set_sampler : Set the MCMC sampler. Examples -------- >>> get_sampler_name() 'MetropolisMH' """ return self._pyblocxs.get_sampler_name()
[docs] def set_sampler(self, sampler): """Set the MCMC sampler. The sampler determines the type of jumping rule to be used when running the MCMC analysis. Parameters ---------- sampler : str or `sherpa.sim.Sampler` instance When a string, the name of the sampler to use (case insensitive). The supported options are given by the `list_samplers` function. See Also -------- get_draws : Run the pyBLoCXS MCMC algorithm. list_samplers : List the MCMC samplers. set_sampler : Set the MCMC sampler. set_sampler_opt : Set an option for the current MCMC sampler. Notes ----- The jumping rules are: MH The Metropolis-Hastings rule, which jumps from the best-fit location, even if the previous iteration had moved away from it. MetropolisMH This is the Metropolis with Metropolis-Hastings algorithm, that jumps from the best-fit with probability ``p_M``, otherwise it jumps from the last accepted jump. The value of ``p_M`` can be changed using `set_sampler_opt`. PragBayes This is used when the effective area calibration uncertainty is to be included in the calculation. At each nominal MCMC iteration, a new calibration product is generated, and a series of N (the ``nsubiters`` option) MCMC sub-iteration steps are carried out, choosing between Metropolis and Metropolis-Hastings types of samplers with probability ``p_M``. Only the last of these sub-iterations are kept in the chain. The ``nsubiters`` and ``p_M`` values can be changed using `set_sampler_opt`. FullBayes Another sampler for use when including uncertainties due to the effective area. Examples -------- >>> set_sampler('metropolismh') """ self._pyblocxs.set_sampler(sampler)
[docs] def get_sampler(self): """Return the current MCMC sampler options. Returns the options for the current pyBLoCXS MCMC sampling method (jumping rules). Returns ------- options : dict A copy of the options for the chosen sampler. Use `set_sampler_opt` to change these values. The fields depend on the current sampler. See Also -------- get_sampler_name : Return the name of the current MCMC sampler. get_sampler_opt : Return an option of the current MCMC sampler. set_sampler : Set the MCMC sampler. set_sampler_opt : Set an option for the current MCMC sampler. Examples -------- >>> print(get_sampler()) """ return self._pyblocxs.get_sampler()
# DOC-TODO: should set_sampler_opt be mentioned here?
[docs] def set_prior(self, par, prior): """Set the prior function to use with a parameter. The default prior used by `get_draws` for each parameter is flat, varying between the soft minimum and maximum values of the parameter (as given by the `min` and `max` attributes of the parameter object). The `set_prior` function is used to change the form of the prior for a parameter, and `get_prior` returns the current prior for a parameter. Parameters ---------- par : a `sherpa.models.parameter.Parameter` instance A parameter of a model instance. prior : function or sherpa.models.model.Model instance The function to use for a prior. It must accept a single argument and return a value of the same size as the input. See Also -------- get_draws : Run the pyBLoCXS MCMC algorithm. get_prior : Return the prior function for a parameter (MCMC). set_sampler : Set the MCMC sampler. Examples -------- Set the prior for the ``kT`` parameter of the ``therm`` component to be a gaussian, centered on 1.7 keV and with a FWHM of 0.35 keV: >>> create_model_component('xsapec', 'therm') >>> create_model_component('gauss1d', 'p_temp') >>> p_temp.pos = 1.7 >>> p_temp.fwhm = 0.35 >>> set_prior(therm.kT, p_temp) Create a function (``lognorm``) and use it as the prior of the ``nH`` parameter of the ``abs1`` model component:: >>> def lognorm(x): ... nh = 20 ... sigma = 0.5 # use a sigma of 0.5 ... # nH is in units of 10^-22 so convert ... dx = np.log10(x) + 22 - nh ... norm = sigma / np.sqrt(2 * np.pi) ... return norm * np.exp(-0.5 * dx * dx / (sigma * sigma)) ... >>> create_model_component('xsphabs', 'abs1') >>> set_prior(abs1.nH, lognorm) """ # NOTE: the second piece of code is indented in the example # above because otherwise sphinx seems to think that the # colon at the end of the "def lognorm" line ends the # code block. self._pyblocxs.set_prior(par, prior)
[docs] def get_prior(self, par): """Return the prior function for a parameter (MCMC). The default behavior of the pyBLoCXS MCMC sampler (run by the `get_draws` function) is to use a flat prior for each parameter. The `get_prior` routine finds the current prior assigned to a parameter, and `set_prior` is used to change it. Parameters ---------- par : a `sherpa.models.parameter.Parameter` instance A parameter of a model instance. Returns ------- prior The parameter prior set by a previous call to `set_prior`. This may be a function or model instance. Raises ------ ValueError If a prior has not been set for the parameter. See Also -------- set_prior : Set the prior function to use with a parameter. Examples -------- >>> prior = get_prior(bgnd.c0) >>> print(prior) """ return self._pyblocxs.get_prior(par)
[docs] def list_priors(self): """Return the priors set for model parameters, if any. Returns ------- priors : dict The dictionary of mappings between parameters (keys) and prior functions (values) created by `set_prior`. See Also -------- get_prior : Return the prior function for a parameter (MCMC). set_prior : Set the prior function to use with a parameter. Examples -------- In this example a prior on the ``PhoIndex`` parameter of the ``pl`` instance has been set to be a gaussian: >>> list_priors() {'pl.PhoIndex': <Gauss1D model instance 'gauss1d.gline'>} """ return self._pyblocxs.list_priors()
[docs] def list_samplers(self): """List the MCMC samplers. Returns ------- samplers : list of str A list of the names (in lower case) that can be used with `set_sampler`. See Also -------- get_sampler_name : Return the name of the current MCMC sampler. Examples -------- >>> list_samplers() ['metropolismh', 'fullbayes', 'mh', 'pragbayes'] """ return self._pyblocxs.list_samplers()
# DOC-TODO: add pointers on what to do with the return values
[docs] def get_draws(self, id: Optional[IdType] = None, otherids: Sequence[IdType] = (), niter=1000, covar_matrix=None): """Run the pyBLoCXS MCMC algorithm. The function runs a Markov Chain Monte Carlo (MCMC) algorithm designed to carry out Bayesian Low-Count X-ray Spectral (BLoCXS) analysis. It explores the model parameter space at the suspected statistic minimum (i.e. after using `fit`). The return values include the statistic value, parameter values, and an acceptance flag indicating whether the row represents a jump from the current location or not. For more information see the `sherpa.sim` module and the reference given below. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. otherids : sequence of int or str, optional Other data sets to use in the calculation. niter : int, optional The number of draws to use. The default is ``1000``. covar_matrix : 2D array, optional The covariance matrix to use. If ``None`` then the result from `get_covar_results().extra_output` is used. Returns ------- stats, accept, params The results of the MCMC chain. The stats and accept arrays contain ``niter+1`` elements, with the first row being the starting values. The params array has ``(nparams, niter+1)`` elements, where nparams is the number of free parameters in the model expression, and the first column contains the values that the chain starts at. The accept array contains boolean values, indicating whether the jump, or step, was accepted (``True``), so the parameter values and statistic change, or it wasn't, in which case there is no change to the previous row. The `sherpa.utils.get_error_estimates` routine can be used to calculate the credible one-sigma interval from the params array. See Also -------- covar, fit, get_sampler, plot_cdf, plot_pdf, plot_scatter, plot_trace, set_prior, set_rng, set_sampler Notes ----- The chain is run using fit information associated with the specified data set, or sets, the currently set sampler (`set_sampler`) and parameter priors (`set_prior`), for a specified number of iterations. The model should have been fit to find the best-fit parameters, and `covar` called, before running `get_draws`. The results from `get_draws` is used to estimate the parameter distributions. The `set_rng` routine is used to control how the random numbers are generated. References ---------- `"Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation", van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A. 2001, Ap.J., 548, 224 <https://adsabs.harvard.edu/abs/2001ApJ...548..224V>`_ Examples -------- Fit a source and then run a chain to investigate the parameter distributions. The distribution of the stats values created by the chain is then displayed, using `plot_trace`, and the parameter distributions for the first two thawed parameters are displayed. The first one as a cumulative distribution using `plot_cdf` and the second one as a probability distribution using `plot_pdf`. Finally the acceptance fraction (number of draws where the chain moved) is displayed. Note that in a full analysis session a burn-in period would normally be removed from the chain before using the results. >>> fit() >>> covar() >>> stats, accept, params = get_draws(1, niter=1e4) >>> plot_trace(stats, name='stat') >>> names = [p.fullname for p in get_source().pars if not p.frozen] >>> plot_cdf(params[0,:], name=names[0], xlabel=names[0]) >>> plot_pdf(params[1,:], name=names[1], xlabel=names[1]) >>> accept[:-1].sum() * 1.0 / len(accept - 1) 0.4287 The following runs the chain on multiple data sets, with identifiers 'core', 'jet1', and 'jet2': >>> stats, accept, params = get_draws('core', ['jet1', 'jet2'], niter=1e4) """ ids, fit = self._get_fit(id, otherids) # Allow the user to jump from a user defined point in parameter space? # Meaning let the user set up parameter space without fitting first. # fit_results = self.get_fit_results() # if fit_results is None: # raise TypeError("Fit has not been run") if covar_matrix is None: covar_results = self.get_covar_results() if covar_results is None: raise TypeError("Covariance has not been calculated") covar_matrix = covar_results.extra_output return self._pyblocxs.get_draws(fit, covar_matrix, niter=niter, rng=self.get_rng())
########################################################################### # Basic plotting ########################################################################### # # Plot object access #
[docs] def get_split_plot(self): """Return the plot attributes for displays with multiple plots. Returns ------- splot : a `sherpa.plot.SplitPlot` instance See Also -------- contour, plot Examples -------- Change the layout of the plot and contour commands to display three vertical plots: >>> sp = get_split_plot() >>> sp.rows = 3 >>> sp.cols = 1 """ return self._splitplot
[docs] def get_data_plot(self, id: Optional[IdType] = None, recalc=True): """Return the data used by plot_data. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. recalc : bool, optional If ``False`` then the results from the last call to `plot_data` (or `get_data_plot`) are returned, otherwise the data is re-generated. Returns ------- data : a `sherpa.plot.DataPlot` instance An object representing the data used to create the plot by `plot_data`. The relationship between the returned values and the values in the data set depend on the data type. For example PHA data are plotted in units controlled by `sherpa.astro.ui.set_analysis`, but are stored as channels and counts, and may have been grouped and the background estimate removed. See Also -------- get_data_plot_prefs : Return the preferences for plot_data. get_default_id : Return the default data set identifier. plot_data : Plot the data values. """ # Allow an answer to be returned if recalc is False and no # data has been loaded. However, it's not obvious what the # answer should be if recalc=False and the dataset has # changed type since get_data_plot was last called. # if recalc: data = self.get_data(id) else: data = self._get_data(id) # This uses the implicit conversion of bool to 0 or 1. # idx = isinstance(data, sherpa.data.Data1DInt) plotobj = self._plot_types["data"][idx] if recalc: plotobj.prepare(data, self.get_stat()) return plotobj
# DOC-TODO: discussion of preferences needs better handling # of how it interacts with the chosen plot backend. #
[docs] def get_plot_prefs(self, plottype: str, id: Optional[IdType] = None, **kwargs): """Return the preferences for the given plot type. .. versionadded:: 4.16.0 Parameters ---------- plottype : str The type of plt, such as "data", "model", or "resid". The "fit" argument is not supported. id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- prefs : dict Changing the values of this dictionary will change any new data plots. This dictionary will be empty if no plot backend is available. See Also -------- get_data_plot_prefs, get_model_plot_prefs, set_xlinear, set_xlog, set_ylinear, set_ylog Notes ----- The meaning of the fields depend on the chosen plot backend. A value of ``None`` means to use the default value for that attribute, or not to use that setting. The "fit" argument can not be used, even though there is a get_fit_plot call. Either use the "data" or "model" arguments to access the desired plot type, or use get_fit_plot() and access the dataplot and modelplot attributes directly. Examples -------- After these commands, any data plot will use a green symbol and not display Y error bars. >>> prefs = get_plot_prefs("data") >>> prefs['color'] = 'green' >>> prefs['yerrorbars'] = False """ # By accepting kwargs we can send in the bkg_id argument from # the astro version without needing to override this call. # # This relies on each key in _plot_types having a # corresponding get_<key>_plot() call. # ptype = self._get_plottype(plottype) # To also catch the astro layer we do not check exactly, just # that fit is an argument. Technically we could adjust the # error message to include 'bkg'/'bkg_model' but this is # excessive. # if ptype.find("fit") > -1: raise ArgumentErr(f"Use 'data' or 'model' instead of '{plottype}'") get = getattr(self, f"get_{ptype}_plot") plotobj = get(id, recalc=False, **kwargs) return get_plot_prefs(plotobj)
[docs] def get_data_plot_prefs(self, id: Optional[IdType] = None): """Return the preferences for plot_data. The plot preferences may depend on the data set, so it is now an optional argument. .. versionchanged:: 4.12.2 The id argument has been given. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- prefs : dict Changing the values of this dictionary will change any new data plots. This dictionary will be empty if no plot backend is available. See Also -------- get_plot_prefs, plot_data, set_xlinear, set_xlog, set_ylinear, set_ylog Notes ----- The meaning of the fields depend on the chosen plot backend. A value of ``None`` means to use the default value for that attribute, unless indicated otherwise. These preferences are used by the following commands: `plot_data`, `plot_bkg`, `plot_ratio`, and the "fit" variants, such as `plot_fit`, `plot_fit_resid`, and `plot_bkg_fit`. The following preferences are recognized by the matplotlib backend: ``alpha`` The transparency value used to draw the line or symbol, where 0 is fully transparent and 1 is fully opaque. ``barsabove`` The barsabove argument for the matplotlib errorbar function. ``capsize`` The capsize argument for the matplotlib errorbar function. ``color`` The color to use (will be over-ridden by more-specific options below). The default is ``None``. ``ecolor`` The color to draw error bars. The default is ``None``. ``linestyle`` How should the line connecting the data points be drawn. The default is 'None', which means no line is drawn. ``marker`` What style is used for the symbols. The default is ``'.'`` which indicates a point. ``markerfacecolor`` What color to draw the symbol representing the data points. The default is ``None``. ``markersize`` What size is the symbol drawn. The default is ``None``. ``xerrorbars`` Should error bars be drawn for the X axis. The default is ``False``. ``xlog`` Should the X axis be drawn with a logarithmic scale? The default is ``False``. This field can also be changed with the `set_xlog` and `set_xlinear` functions. ``yerrorbars`` Should error bars be drawn for the Y axis. The default is ``True``. ``ylog`` Should the Y axis be drawn with a logarithmic scale? The default is ``False``. This field can also be changed with the `set_ylog` and `set_ylinear` functions. Examples -------- After these commands, any data plot will use a green symbol and not display Y error bars. >>> prefs = get_data_plot_prefs() >>> prefs['color'] = 'green' >>> prefs['yerrorbars'] = False """ plotobj = self.get_data_plot(id, recalc=False) return get_plot_prefs(plotobj)
# also in sherpa.astro.utils (copies this docstring)
[docs] def get_model_plot(self, id: Optional[IdType] = None, recalc=True): """Return the data used to create the model plot. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. recalc : bool, optional If ``False`` then the results from the last call to `plot_model` (or `get_model_plot`) are returned, otherwise the data is re-generated. Returns ------- instance An object representing the data used to create the plot by `plot_model`. The return value depends on the data set (e.g. 1D binned or un-binned). See Also -------- get_model_plot_prefs : Return the preferences for plot_model. plot_model : Plot the model for a data set. Examples -------- >>> mplot = get_model_plot() >>> print(mplot) """ if recalc: data = self.get_data(id) else: data = self._get_data(id) idx = isinstance(data, sherpa.data.Data1DInt) plotobj = self._plot_types["model"][idx] if recalc: plotobj.prepare(data, self.get_model(id), self.get_stat()) return plotobj
# also in sherpa.astro.utils (does not copy this docstring)
[docs] def get_source_plot(self, id: Optional[IdType] = None, recalc=True): """Return the data used to create the source plot. Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. recalc : bool, optional If ``False`` then the results from the last call to `plot_source` (or `get_source_plot`) are returned, otherwise the data is re-generated. Returns ------- instance An object representing the data used to create the plot by `plot_source`. The return value depends on the data set (e.g. 1D binned or un-binned). See Also -------- get_model_plot : Return the data used to create the model plot. plot_model : Plot the model for a data set. plot_source : Plot the source expression for a data set. Examples -------- Retrieve the source plot information for the default data set and then display it: >>> splot = get_source_plot() >>> print(splot) Return the plot data for data set 2, and then use it to create a plot: >>> s2 = get_source_plot(2) >>> s2.plot() Display the two source plots for the 'jet' and 'core' datasets on the same plot: >>> splot1 = get_source_plot(id='jet') >>> splot2 = get_source_plot(id='core') >>> splot1.plot() >>> splot2.overplot() """ idval = self._fix_id(id) mdl = self._models.get(idval, None) if mdl is not None: raise IdentifierErr(f"Convolved model\n'{mdl.name}'\n" f" is set for dataset {idval}. " "You should use get_model_plot instead.") if recalc: data = self.get_data(idval) else: data = self._get_data(idval) idx = isinstance(data, sherpa.data.Data1DInt) plotobj = self._plot_types["source"][idx] if recalc: plotobj.prepare(data, self.get_source(idval), self.get_stat()) return plotobj
[docs] def get_model_component_plot(self, id, model=None, recalc=True): """Return the data used to create the model-component plot. Parameters ---------- id : int or str, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. model : str or sherpa.models.model.Model instance The component to use (the name, if a string). recalc : bool, optional If ``False`` then the results from the last call to `plot_model_component` (or `get_model_component_plot`) are returned, otherwise the data is re-generated. Returns ------- instance An object representing the data used to create the plot by `plot_model_component`. The return value depends on the data set (e.g. 1D binned or un-binned). See Also -------- get_model_plot : Return the data used to create the model plot. plot_model : Plot the model for a data set. plot_model_component : Plot a component of the model for a data set. Notes ----- The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `model` parameter. If given two un-named arguments, then they are interpreted as the `id` and `model` parameters, respectively. Examples -------- Return the plot data for the ``pl`` component used in the default data set: >>> cplot = get_model_component_plot(pl) Return the full source model (``fplot``) and then for the components ``gal * pl`` and ``gal * gline``, for the data set 'jet': >>> fmodel = xsphabs.gal * (powlaw1d.pl + gauss1d.gline) >>> set_source('jet', fmodel) >>> fit('jet') >>> fplot = get_model_plot('jet') >>> plot1 = get_model_component_plot('jet', pl*gal) >>> plot2 = get_model_component_plot('jet', gline*gal) """ if model is None: id, model = model, id model = self._check_model(model) if recalc: data = self.get_data(id) else: data = self._get_data(id) idx = isinstance(data, sherpa.data.Data1DInt) plotobj = self._plot_types["model_component"][idx] if recalc: plotobj.prepare(data, model, self.get_stat()) return plotobj
[docs] def get_model_components_plot(self, id: Optional[IdType] = None ) -> MultiPlot: """Return the data used by plot_model_components. .. versionadded:: 4.16.1 Parameters ---------- id : int, str, or None, optional The data set that provides the data. If not given then the default identifier is used, as returned by `get_default_id`. Returns ------- plot : MultiPlot A plot object containing the individual plot objects. See Also -------- get_model_plot, plot_model, plot_model_component, plot_model_components Notes ----- Unlike get_model_component this routine does not accept either model or recalc argumen