interpolate
- sherpa.utils.interpolate(xout, xin, yin, function=<function linear_interp>)[source] [edit on github]
One-dimensional interpolation.
- Parameters:
xout (array_like) – The positions at which to interpolate.
xin (array_like) – The x values of the data to interpolate. This must be sorted so that it is monotonically increasing.
yin (array_like) – The y values of the data to interpolate (must be the same size as
xin
).function (func, optional) – The function to perform the interpolation. It accepts the arguments (xout, xin, yin) and returns the interpolated values. The default is to use linear interpolation.
- Returns:
yout – The interpolated y values (same size as
xout
).- Return type:
array_like
See also
Examples
Use linear interpolation to calculate the Y values for the
xgrid
array:>>> x = [1.2, 3.4, 4.5, 5.2] >>> y = [12.2, 14.4, 16.8, 15.5] >>> xgrid = np.linspace(2, 5, 5) >>> ygrid = interpolate(xgrid, x, y)
Use Neville’s algorithm for the interpolation:
>>> ygrid = interpolate(xgrid, x, y, neville)